
Organization & Contents

Uwe R. Zimmer - The Australian National University

Concurrent & Distributed Systems 2015

Concurrent & Distributed Systems 2015

Uwe R. Zimmer - The Australian National University

Organization & Contents

Uwe R. Zimmer - The Australian National University

Concurrent & Distributed Systems 2015Concurrent & Distributed Systems 2015

Organization & Contents

© 2015 Uwe R. Zimmer, The Australian National University page 3 of 700 (“Organization & Contents” up to page 18)

what is offered here?

Fundamentals & Overview
as well as perspectives, paths, methods,
implementations, and open questions

of/into/for/about

Concurrent & Distributed Systems

M
em

or
y

Sequencer
Decoder

FlagsFlagsRegisters

IP

SP

Registers

IP

SP

Sequencer
Decoder

Int.

A0

XOR

AND

B0

S0

XOR

AND

XOR

AND

OR

S1

A1 B1

XOR

AND

XOR

AND

OR

A2 B2

S2

C

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Server

Server

Server

Server

Server

Server

Server

Clien

Coord.

ver

rver

rver

Server

Server

nt

C

ver

rverCoordinator reports to client:
"Committed" or "Aborted"

time0 5 10 15 20 25 30 35 40 45

Write (A)P1

Write (C)

Read (A)

Write (B)

P2

P3

Write (B)

Order

Re W

t 'real-time'

C 'measured time'

sync.sync.sync.

ref.
time

ref.
time

ref.
time

ideal
clock

page 3 o

R1 R3

P1 P2 P3

R2

P4

time0 5 10 15 20 25 30 35 40 45

time0 5 10 15 20 25 30 35 40 45

FCFS

FCFS

RR

FB-
seq.
FB-

ovlp

SJF

SJF

HRRF

SRTF

Task i

t1 0352025 10

deadline

min. delay
max. delay

activatedcreated

max. elapse time
max. exec. time

Semaphores
(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods

(mutual exclusion) Conditional
variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)

P3 25

time0 5 10 15 20 25 30 35 40 45

21

20

P1

26 27 29

22

29

P2

31 35

23 24 25 26 27 30 31 33 34 35 36 37

30 31 32 33 34 35 36 37 4038 39

27 28 30 37 38

20 22

26

22 23 24

27

30

4

27

24

229292292992929229292992992922929

29

22252

8

22225222222222

9

26 272727227777777777777

0

26 272727227277772777

0

2 333333333333333333333333333333333333 3333343434343433434343434

31

37

31 35

4444

35

38

35

34

636

33333333333333333333333333333333

333353533335335333535335553533553555

P0

32

30

30

30

12

3337

44440

3888888

Organization & Contents

© 2015 Uwe R. Zimmer, The Australian National University page 4 of 700 (“Organization & Contents” up to page 18)

who could be interested in this?

anybody who …

… wants to work with real-world scale computer systems

… would like to learn how to
analyse and design operational and robust systems

… would like to understand more about the existing trade-off between
theory, the real-world, traditions, and pragmatism in computer science

… would like to understand why concurrent systems are
an essential basis for most contemporary devices and systems

Organization & Contents

© 2015 Uwe R. Zimmer, The Australian National University page 5 of 700 (“Organization & Contents” up to page 18)

who are these people? – introductions

This course will be given by

Uwe R. Zimmer & Alistair Rendell

Your individual tutors are

Christopher Claoue-Long,

Nathan Yong,

Tessa Bradbury

i l U i it

Organization & Contents

© 2015 Uwe R. Zimmer, The Australian National University page 6 of 700 (“Organization & Contents” up to page 18)

how will this all be done?

 Lectures:
• 2 x 1.5 hours lectures per week … all the nice stuff

Monday, 16:00; Thursday 16:00 (both in Chem T1 - which is: here)

 Laboratories:
• 2 hours per week … all the rough stuff

time slots: on our web-site – all in CSIT Nxxx laboratories
-enrolment: https://cs.anu.edu.au/streams/ (will open after fi rst lecture)

 Resources:
• Introduced in the lectures and collected on the course page:

http://cs.anu.edu.au/student/comp2310/ … as well as schedules, slides,
sources, links to forums, etc. pp. … keep an eye on this page!

 Assessment:
• Exam at the end of the course (55%)

plus two assignments (20% + 15%)
plus one mid-semester exam (10%)

Organization & Contents

© 2015 Uwe R. Zimmer, The Australian National University page 7 of 700 (“Organization & Contents” up to page 18)

Text book for the course

[Ben-Ari06]
M. Ben-Ari
Principles of Concurrent and Distributed Programming
2006, second edition, Prentice-Hall, ISBN 0-13-711821-X

 Many algorithms and concepts for the course are in there
 – but not all!

 References for specifi c aspects of the course are provided
during the course and are found on our web-site.

Organization & Contents

© 2015 Uwe R. Zimmer, The Australian National University page 8 of 700 (chapter 1: “Organization & Contents” up to page 18)

Topics

1. Concurrency [3]

2. Mutual exclusion [2]

3. Condition
synchronization [4]

4. Non-determinism in
concurrent systems [2]

5. Scheduling [2]

6. Safety and liveness [3]

7. Architectures
for CDS [1]

8. Distributed systems [7]

Organization & Contents

© 2015 Uwe R. Zimmer, The Australian National University page 9 of 700 (“Organization & Contents” up to page 18)

Topics

1. Concurrency [3] 1.1. Forms of concurrency [1]

• Coupled dynamical systems

1.2. Models and terminology [1]

• Abstractions

• Interleaving

• Atomicity

• Proofs in concurrent and
distributed systems

1.3. Processes & threads [1]

• Basic defi nitions

• Process states

• Implementations

2. Mutual exclusion [2]

3. Condition
synchronization [4]

4. Non-determinism in
concurrent systems [2]

5. Scheduling [2]

6. Safety and liveness [3]

7. Architectures
for CDS [1]

8. Distributed systems [7]

Organization & Contents

© 2015 Uwe R. Zimmer, The Australian National University page 10 of 700 (“Organization & Contents” up to page 18)

Topics

1. Concurrency [3]

2. Mutual exclusion [2]

2.1. by shared variables [1]

• Failure possibilities

• Dekker’s algorithm

2.2. by test-and-set hardware
support [0.5]

• Minimal hardware support

2.3. by semaphores [0.5]

• Dijkstra defi nition

• OS semaphores

3. Condition
synchronization [4]

4. Non-determinism in
concurrent systems [2]

5. Scheduling [2]

6. Safety and liveness [3]

7. Architectures
for CDS [1]

8. Distributed systems [7]

Organization & Contents

© 2015 Uwe R. Zimmer, The Australian National University page 11 of 700 (“Organization & Contents” up to page 18)

Topics

1. Concurrency [3]

2. Mutual exclusion [2]

3. Condition
synchronization [4]

3.1. Shared memory
synchronization [2]

• Semaphores

• Cond. variables

• Conditional critical regions

• Monitors

• Protected objects

3.2. Message passing [2]

• Asynchronous /
synchronous

• Remote invocation
/ rendezvous

• Message structure

• Addressing

4. Non-determinism in
concurrent systems [2]

5. Scheduling [2]

6. Safety and liveness [3]

7. Architectures
for CDS [1]

8. Distributed systems [7]

Organization & Contents

© 2015 Uwe R. Zimmer, The Australian National University page 12 of 700 (“Organization & Contents” up to page 18)

Topics

1. Concurrency [3]

2. Mutual exclusion [2]

3. Condition
synchronization [4]

4. Non-determinism in
concurrent systems [2]

4.1. Correctness under non-
determinism [1]

• Forms of non-determinism

• Non-determinism
in concurrent/
distributed systems

• Is consistency/correctness
plus non-determinism
a contradiction?

4.2. Select statements [1]

• Forms of non-deterministic
message reception

5. Scheduling [2]

6. Safety and liveness [3]

7. Architectures
for CDS [1]

8. Distributed systems [7]

Organization & Contents

© 2015 Uwe R. Zimmer, The Australian National University page 13 of 700 (“Organization & Contents” up to page 18)

Topics

1. Concurrency [3]

2. Mutual exclusion [2]

3. Condition
synchronization [4]

4. Non-determinism in
concurrent systems [2]

5. Scheduling [2]

5.1. Problem defi nition and
design space [1]

• Which problems are
addressed / solved
by scheduling?

5.2. Basic scheduling methods [1]

• Assumptions for
basic scheduling

• Basic methods

6. Safety and liveness [3]

7. Architectures
for CDS [1]

8. Distributed systems [7]

Organization & Contents

© 2015 Uwe R. Zimmer, The Australian National University page 14 of 700 (“Organization & Contents” up to page 18)

Topics

1. Concurrency [3]

2. Mutual exclusion [2]

3. Condition
synchronization [4]

4. Non-determinism in
concurrent systems [2]

5. Scheduling [2]

6. Safety and liveness [3]

6.1. Safety properties

• Essential time-independent
safety properties

6.2. Livelocks, fairness

• Forms of livelocks

• Classifi cation of fairness

6.3. Deadlocks

• Detection

• Avoidance

• Prevention (& recovery)

6.4. Failure modes

6.5. Idempotent & atomic
operations

• Defi nitions

7. Architectures
for CDS [1]

8. Distributed systems [7]

Organization & Contents

© 2015 Uwe R. Zimmer, The Australian National University page 15 of 700 (“Organization & Contents” up to page 18)

Topics

1. Concurrency [3]

2. Mutual exclusion [2]

3. Condition
synchronization [4]

4. Non-determinism in
concurrent systems [2]

5. Scheduling [2]

6. Safety and liveness [3]

7. Architectures
for CDS [1]

7.1. Hardware architecture

• From switches to
registers and adders

• CPU architecture

• Hardware concurrency

7.2. Language architecture

• Chapel

• Occam

• Rust

• Ada

• C++

8. Distributed systems [7]

Organization & Contents

© 2015 Uwe R. Zimmer, The Australian National University page 16 of 700 (“Organization & Contents” up to page 18)

Topics
1. Concurrency [3]

2. Mutual exclusion [2]

3. Condition
synchronization [4]

4. Non-determinism in
concurrent systems [2]

5. Scheduling [2]

6. Safety and liveness [3]

7. Architectures
for CDS [1]

8. Distributed systems [7]

8.1. Networks [1]

• OSI model

• Network implementations

8.2. Global times [1]

• synchronized clocks

• logical clocks

8.3. Distributed states [1]

• Consistency

• Snapshots

• Termination

8.4. Distributed
communication [1]

• Name spaces

• Multi-casts

• Elections

• Network identifi cation

• Dynamical groups

8.5. Distributed safety
and liveness [1]

• Distributed deadlock
detection

8.6. Forms of distribution/
redundancy [1]

• computation

• memory

• operations

8.7. Transactions [2]

Organization & Contents

© 2015 Uwe R. Zimmer, The Australian National University page 17 of 700 (“Organization & Contents” up to page 18)

24 Lectures

1. Concurrency [3]
1.1. Forms of concurrency [1]

• Coupled dynamical systems

1.2. Models and terminology [1]
• Abstractions
• Interleaving
• Atomicity
• Proofs in concurrent and dis-

tributed systems

1.3. Processes & threads [1]
• Basic defi nitions
• Process states
• Implementations

2. Mutual exclusion [2]
2.1. by shared variables [1]

• Failure possibilities
• Dekker’s algorithm

2.2. by test-and-set hardware support [0.5]
• Minimal hardware support

2.3. by semaphores [0.5]
• Dijkstra defi nition
• OS semaphores

3. Condition synchronization [4]
3.1. Shared memory synchronization [2]

• Semaphores

• Cond. variables
• Conditional critical regions
• Monitors
• Protected objects

3.2. Message passing [2]
• Asynchronous / synchronous
• Remote invocation / rendezvous
• Message structure
• Addressing

4. Non-determinism in con-
current systems [2]

4.1. Correctness under non-determinism [1]
• Forms of non-determinism
• Non-determinism in concur-

rent/distributed systems
• Is consistency/correctness plus non-

determinism a contradiction?

4.2. Select statements [1]
• Forms of non-determinis-

tic message reception

5. Scheduling [2]
5.1. Problem defi nition and design space [1]

• Which problems are addressed
/ solved by scheduling?

5.2. Basic scheduling methods [1]

• Assumptions for basic scheduling
• Basic methods

6. Safety and liveness [3]
6.1. Safety properties

• Essential time-independ-
ent safety properties

6.2. Livelocks, fairness
• Forms of livelocks
• Classifi cation of fairness

6.3. Deadlocks
• Detection
• Avoidance
• Prevention (& recovery)

6.4. Failure modes
6.5. Idempotent & atomic operations

• Defi nitions

7. Architectures for CDS [1]
7.1. Hardware architecture

• From switches to registers and adders
• CPU architecture
• Hardware concurrency

7.2. Language architecture
• Chapel
• Occam
• Ada

• Rust
• C++

8. Distributed systems [7]
8.1. Networks [1]

• OSI model
• Network implementations

8.2. Global times [1]
• synchronized clocks
• logical clocks

8.3. Distributed states [1]
• Consistency
• Snapshots
• Termination

8.4. Distributed communication [1]
• Name spaces
• Multi-casts
• Elections
• Network identifi cation
• Dynamical groups

8.5. Distributed safety and liveness [1]
• Distributed deadlock detection

8.6. Forms of distribution/redundancy [1]
• computation
• memory
• operations

8.7. Transactions [2]

Organization & Contents

© 2015 Uwe R. Zimmer, The Australian National University page 18 of 700 (“Organization & Contents” up to page 18)

Laboratories & Assignments

Laboratories

1. Concurrency language sup-
port basics (in Ada) [3]

1.1. Structured, strongly typed programming
• Program structures

• Data structures

1.2. Generic, re-usable programming
• Generics

• Abstract types

1.3. Concurrent processes:
• Creation

• Termination

• Rendezvous

2. Concurrent programming [3]

2.1. Synchronization

• Protected objects

2.2. Remote invocation

• Extended rendezvous

2.3. Client-Server architectures

• Entry families

• Requeue facility

3. Concurrency in a multi-

core system[3]

3.1. Multi-core process creation, termination

3.2. Multi-core process communication

Assignments

1. Concurrent programming [20%]

Ada programming task involving:
• Mutual exclusion

• Synchronization

• Message passing

2. Concurrent programming in

multi-core systems [15%]

Multi-core program-

ming task involving:
• Process communication

Examinations

1. Mid-term check [10%]

• Test question set [not marked]

2. Final exam [55%]

• Examining the complete lecture

Marking

The fi nal mark is based on

the assignments [35%]

plus the examinations [65%]

Language refresher / introduction course

Uwe R. Zimmer - The Australian National University

Concurrent & Distributed Systems 2015

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 20 of 700 (“Language refresher / introduction course” up to page 159)

References for this chapter

[Ada 2012 Language Reference Manual]
see course pages or http://www.ada-auth.org/standards/ada12.html

[Chapel 1.11.0 Language Specifi cation Version 0.97]
see course pages or http://chapel.cray.com/spec/spec-0.97.pdf released on 2. April 2015

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 21 of 700 (“Language refresher / introduction course” up to page 159)

Languages explicitly supporting concurrency: e.g. Ada

Ada is an ISO standardized (ISO/IEC 8652:201x(E)) ‘general purpose’
language with focus on “program reliability and maintenance,
programming as a human activity, and effi ciency”.

It provides core language primitives for:

• Strong typing, contracts,
separate compilation (specifi cation and implementation), object-orientation.

• Concurrency, message passing, synchronization, monitors, rpcs, timeouts, scheduling,
priority ceiling locks, hardware mappings, fully typed network communication.

• Strong run-time environments (incl. stand-alone execution).

… as well as standardized language-annexes for:

• Additional real-time features, distributed programming, system-level programming,
numeric, informations systems, safety and security issues.

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 22 of 700 (“Language refresher / introduction course” up to page 159)

Ada

A crash course
… refreshing for some, x’th-language introduction for others:

• Specifi cation and implementation (body) parts, basic types

• Exceptions

• Information hiding in specifi cations (‘private’)

• Contracts

• Generic programming (polymorphism)

• Tasking

• Monitors and synchronisation (‘protected’, ‘entries’, ‘selects’, ‘accepts’)

• Abstract types and dispatching

Not mentioned here: general object orientation, dynamic memory management,
foreign language interfaces, marshalling, basics of imperative programming, …

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 23 of 700 (chapter 2: “Language refresher / introduction course” up to page 159)

Data structure example

Queues
Forms of implementation:

In Out

Enqueue Dequeue

Dequeue Enqueue

Ring lists

Dequeue Enqueue

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 24 of 700 (chapter 2: “Language refresher / introduction course” up to page 159)

Data structure example

Queues
Forms of implementation:

In Out

Enqueue Dequeue

Dequeue Enqueue

Dequeue Enqueue

Best suited for
real-time systems.

Almost
impossible

for real-time
systems.

page 24 of 700 (chapter 2: “Language refresher / introductio0

Potentially suited for real-time sys-

tems if distributed storage is required

and memory can be pre-allocated.

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 25 of 700 (“Language refresher / introduction course” up to page 159)

Ada

Basics
… introducing:

• Specifi cation and implementation (body) parts

• Constants

• Some basic types (integer specifi cs)

• Some type attributes

• Parameter specifi cation

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 26 of 700 (“Language refresher / introduction course” up to page 159)

A simple queue specifi cation

package Queue_Pack_Simple is

 QueueSize : constant Positive := 10;

 type Element is new Positive range 1_000..40_000;
 type Marker is mod QueueSize;
 type List is array (Marker) of Element;

 type Queue_Type is record
 Top, Free : Marker := Marker’First;
 Is_Empty : Boolean := True;
 Elements : List;
 end record;

 procedure Enqueue (Item: Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

 function Is_Empty (Queue : Queue_Type) return Boolean;
 function Is_Full (Queue : Queue_Type) return Boolean;

end Queue_Pack_Simple;

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 27 of 700 (“Language refresher / introduction course” up to page 159)

A simple queue specifi cation

package Queue_Pack_Simple is

 QueueSize : constant Positive := 10;

 type Element is new Positive range 1_000..40_000;
 type Marker is mod QueueSize;
 type List is array (Marker) of Element;

 type Queue_Type is record
 Top, Free : Marker := Marker’First;
 Is_Empty : Boolean := True;
 Elements : List;
 end record;

 procedure Enqueue (Item: Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

 function Is_Empty (Queue : Queue_Type) return Boolean;
 function Is_Full (Queue : Queue_Type) return Boolean;

end Queue_Pack_Simple;

Specifi cations defi ne an interface to

provided types and operations.

Syntactically enclosed
in a package block.

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 28 of 700 (“Language refresher / introduction course” up to page 159)

A simple queue specifi cation

package Queue_Pack_Simple is

 QueueSize : constant Positive := 10;

 type Element is new Positive range 1_000..40_000;
 type Marker is mod QueueSize;
 type List is array (Marker) of Element;

 type Queue_Type is record
 Top, Free : Marker := Marker’First;
 Is_Empty : Boolean := True;
 Elements : List;
 end record;

 procedure Enqueue (Item: Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

 function Is_Empty (Queue : Queue_Type) return Boolean;
 function Is_Full (Queue : Queue_Type) return Boolean;

end Queue_Pack_Simple;

Variables should be initialized.

Constants must be initialized.

Assignments are denoted
by the “:=” symbol.

… leaving the “=” symbol
for comparisons.

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 29 of 700 (“Language refresher / introduction course” up to page 159)

A simple queue specifi cation

package Queue_Pack_Simple is

 QueueSize : constant Positive := 10;

 type Element is new Positive range 1_000..40_000;
 type Marker is mod QueueSize;
 type List is array (Marker) of Element;

 type Queue_Type is record
 Top, Free : Marker := Marker’First;
 Is_Empty : Boolean := True;
 Elements : List;
 end record;

 procedure Enqueue (Item: Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

 function Is_Empty (Queue : Queue_Type) return Boolean;
 function Is_Full (Queue : Queue_Type) return Boolean;

end Queue_Pack_Simple;

n outtt Queue Type);

Default initializations can
be selected to be:

as is (random memory content),

initialized to invalids, e.g. 999

or valid, predicable values, e.g. 1_000

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 30 of 700 (“Language refresher / introduction course” up to page 159)

A simple queue specifi cation

package Queue_Pack_Simple is

 QueueSize : constant Positive := 10;

 type Element is new Positive range 1_000..40_000;
 type Marker is mod QueueSize;
 type List is array (Marker) of Element;

 type Queue_Type is record
 Top, Free : Marker := Marker’First;
 Is_Empty : Boolean := True;
 Elements : List;
 end record;

 procedure Enqueue (Item: Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

 function Is_Empty (Queue : Queue_Type) return Boolean;
 function Is_Full (Queue : Queue_Type) return Boolean;

end Queue_Pack_Simple;

Language refresher / introduction course” up to page 159)

Always be as specifi c as
the language allows.

… and don’t repeat yourself!

Numerical types
can be specifi ed by:

range, modulo,
number of digits (fl oating point)

or delta increment (fi xed point).

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 31 of 700 (“Language refresher / introduction course” up to page 159)

A simple queue specifi cation

package Queue_Pack_Simple is

 QueueSize : constant Positive := 10;

 type Element is new Positive range 1_000..40_000;
 type Marker is mod QueueSize;
 type List is array (Marker) of Element;

 type Queue_Type is record
 Top, Free : Marker := Marker’First;
 Is_Empty : Boolean := True;
 Elements : List;
 end record;

 procedure Enqueue (Item: Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

 function Is_Empty (Queue : Queue_Type) return Boolean;
 function Is_Full (Queue : Queue_Type) return Boolean;

end Queue_Pack_Simple;

All Types come with a long
list of built-in attributes.

Let the compiler fi ll in what you
already (implicitly) specifi ed!

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 32 of 700 (“Language refresher / introduction course” up to page 159)

A simple queue specifi cation

package Queue_Pack_Simple is

 QueueSize : constant Positive := 10;

 type Element is new Positive range 1_000..40_000;
 type Marker is mod QueueSize;
 type List is array (Marker) of Element;

 type Queue_Type is record
 Top, Free : Marker := Marker’First;
 Is_Empty : Boolean := True;
 Elements : List;
 end record;

 procedure Enqueue (Item: Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

 function Is_Empty (Queue : Queue_Type) return Boolean;
 function Is_Full (Queue : Queue_Type) return Boolean;

end Queue_Pack_Simple;

guage refresher / introduction course” up to page 159)

Parameters can be passed
as ‘in’ (default),

‘out’
or ‘in out’.

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 33 of 700 (“Language refresher / introduction course” up to page 159)

A simple queue specifi cation

package Queue_Pack_Simple is

 QueueSize : constant Positive := 10;

 type Element is new Positive range 1_000..40_000;
 type Marker is mod QueueSize;
 type List is array (Marker) of Element;

 type Queue_Type is record
 Top, Free : Marker := Marker’First;
 Is_Empty : Boolean := True;
 Elements : List;
 end record;

 procedure Enqueue (Item: Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

 function Is_Empty (Queue : Queue_Type) return Boolean;
 function Is_Full (Queue : Queue_Type) return Boolean;

end Queue_Pack_Simple;

t Q T)

All specifi cations are used in

Code optimizations (optional),

Compile time checks (mandatory)

Run-time checks (suppressible).

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 34 of 700 (“Language refresher / introduction course” up to page 159)

A simple queue specifi cation

package Queue_Pack_Simple is

 QueueSize : constant Positive := 10;

 type Element is new Positive range 1_000..40_000;
 type Marker is mod QueueSize;
 type List is array (Marker) of Element;

 type Queue_Type is record
 Top, Free : Marker := Marker’First;
 Is_Empty : Boolean := True;
 Elements : List;
 end record;

 procedure Enqueue (Item: Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

 function Is_Empty (Queue : Queue_Type) return Boolean;
 function Is_Full (Queue : Queue_Type) return Boolean;

end Queue_Pack_Simple;
… anything on this slide
still not perfectly clear?

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 35 of 700 (“Language refresher / introduction course” up to page 159)

A simple queue implementation
package body Queue_Pack_Simple is

 procedure Enqueue (Item: Element; Queue: in out Queue_Type) is

 begin
 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Queue.Free + 1;
 Queue.Is_Empty := False;
 end Enqueue;

 procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is

 begin
 Item := Queue.Elements (Queue.Top);
 Queue.Top := Queue.Top + 1;
 Queue.Is_Empty := Queue.Top = Queue.Free;
 end Dequeue;

 function Is_Empty (Queue : Queue_Type) return Boolean is
 (Queue.Is_Empty);

 function Is_Full (Queue : Queue_Type) return Boolean is
 (not Queue.Is_Empty and then Queue.Top = Queue.Free);

end Queue_Pack_Simple;

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 36 of 700 (“Language refresher / introduction course” up to page 159)© 2015 Uwe R. Zimmer, The Australian National University page 36 of y 700 (“Language refresher / introduction course” up to page 159)0

A simple queue implementation
package body Queue_Pack_Simple is

 procedure Enqueue (Item: Element; Queue: in out Queue_Type) is

 begin
 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Queue.Free + 1;
 Queue.Is_Empty := False;
 end Enqueue;

 procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is

 begin
 Item := Queue.Elements (Queue.Top);
 Queue.Top := Queue.Top + 1;
 Queue.Is_Empty := Queue.Top = Queue.Free;
 end Dequeue;

 function Is_Empty (Queue : Queue_Type) return Boolean is
 (Queue.Is_Empty);

 function Is_Full (Queue : Queue_Type) return Boolean is
 (not Queue.Is_Empty and then Queue.Top = Queue.Free);

end Queue_Pack_Simple;

Implementations are
defi ned in a separate fi le.

Syntactically enclosed in
a package body block.

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 37 of 700 (“Language refresher / introduction course” up to page 159)

A simple queue implementation
package body Queue_Pack_Simple is

 procedure Enqueue (Item: Element; Queue: in out Queue_Type) is

 begin
 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Queue.Free + 1;
 Queue.Is_Empty := False;
 end Enqueue;

 procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is

 begin
 Item := Queue.Elements (Queue.Top);
 Queue.Top := Queue.Top + 1;
 Queue.Is_Empty := Queue.Top = Queue.Free;
 end Dequeue;

 function Is_Empty (Queue : Queue_Type) return Boolean is
 (Queue.Is_Empty);

 function Is_Full (Queue : Queue_Type) return Boolean is
 (not Queue.Is_Empty and then Queue.Top = Queue.Free);

end Queue_Pack_Simple;

Modulo type, hence no
index checks required.

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 38 of 700 (“Language refresher / introduction course” up to page 159)

A simple queue implementation
package body Queue_Pack_Simple is

 procedure Enqueue (Item: Element; Queue: in out Queue_Type) is

 begin
 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Queue.Free + 1;
 Queue.Is_Empty := False;
 end Enqueue;

 procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is

 begin
 Item := Queue.Elements (Queue.Top);
 Queue.Top := Queue.Top + 1;
 Queue.Is_Empty := Queue.Top = Queue.Free;
 end Dequeue;

 function Is_Empty (Queue : Queue_Type) return Boolean is
 (Queue.Is_Empty);

 function Is_Full (Queue : Queue_Type) return Boolean is
 (not Queue.Is_Empty and then Queue.Top = Queue.Free);

end Queue_Pack_Simple;

Boolean expressions

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 39 of 700 (“Language refresher / introduction course” up to page 159)

A simple queue implementation
package body Queue_Pack_Simple is

 procedure Enqueue (Item: Element; Queue: in out Queue_Type) is

 begin
 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Queue.Free + 1;
 Queue.Is_Empty := False;
 end Enqueue;

 procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is

 begin
 Item := Queue.Elements (Queue.Top);
 Queue.Top := Queue.Top + 1;
 Queue.Is_Empty := Queue.Top = Queue.Free;
 end Dequeue;

 function Is_Empty (Queue : Queue_Type) return Boolean is
 (Queue.Is_Empty);

 function Is_Full (Queue : Queue_Type) return Boolean is
 (not Queue.Is_Empty and then Queue.Top = Queue.Free);

end Queue_Pack_Simple;

i

Side-effect free,
single expression functions

can be expressed with-
out begin-end blocks.

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 40 of 700 (“Language refresher / introduction course” up to page 159)

A simple queue implementation
package body Queue_Pack_Simple is

 procedure Enqueue (Item: Element; Queue: in out Queue_Type) is

 begin
 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Queue.Free + 1;
 Queue.Is_Empty := False;
 end Enqueue;

 procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is

 begin
 Item := Queue.Elements (Queue.Top);
 Queue.Top := Queue.Top + 1;
 Queue.Is_Empty := Queue.Top = Queue.Free;
 end Dequeue;

 function Is_Empty (Queue : Queue_Type) return Boolean is
 (Queue.Is_Empty);

 function Is_Full (Queue : Queue_Type) return Boolean is
 (not Queue.Is_Empty and then Queue.Top = Queue.Free);

end Queue_Pack_Simple;

… anything on this slide
still not perfectly clear?

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 41 of 700 (“Language refresher / introduction course” up to page 159)

A simple queue test program

with Queue_Pack_Simple; use Queue_Pack_Simple;

procedure Queue_Test_Simple is

 Queue : Queue_Type;
 Item : Element;

begin
 Enqueue (2000, Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue);
end Queue_Test_Simple;

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 42 of 700 (“Language refresher / introduction course” up to page 159)

A simple queue test program

with Queue_Pack_Simple; use Queue_Pack_Simple;

procedure Queue_Test_Simple is

 Queue : Queue_Type;
 Item : Element;

begin
 Enqueue (2000, Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue);
end Queue_Test_Simple;

Importing items from other packages
is done with with-clauses.

use-clauses allow to use names with

qualifying them with the package name.

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 43 of 700 (“Language refresher / introduction course” up to page 159)

A simple queue test program

with Queue_Pack_Simple; use Queue_Pack_Simple;

procedure Queue_Test_Simple is

 Queue : Queue_Type;
 Item : Element;

begin
 Enqueue (2000, Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue);
end Queue_Test_Simple;

A top level procedure is read as the

code which needs to be executed.

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 44 of 700 (“Language refresher / introduction course” up to page 159)

A simple queue test program

with Queue_Pack_Simple; use Queue_Pack_Simple;

procedure Queue_Test_Simple is

 Queue : Queue_Type;
 Item : Element;

begin
 Enqueue (2000, Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue);
end Queue_Test_Simple;

Variables are declared Algol style:
“Item is of type Element”.

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 45 of 700 (“Language refresher / introduction course” up to page 159)

A simple queue test program

with Queue_Pack_Simple; use Queue_Pack_Simple;

procedure Queue_Test_Simple is

 Queue : Queue_Type;
 Item : Element;

begin
 Enqueue (2000, Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue);
end Queue_Test_Simple;

… hmm, ok … so this was rubbish …

Will produce a result according
to the chosen initialization:

Raises an “invalid data” exception
if initialized to invalids.

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 46 of 700 (“Language refresher / introduction course” up to page 159)

A simple queue test program

with Queue_Pack_Simple; use Queue_Pack_Simple;

procedure Queue_Test_Simple is

 Queue : Queue_Type;
 Item : Element;

begin
 Enqueue (2000, Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue);
end Queue_Test_Simple;

… anything on this slide
still not perfectly clear?

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 47 of 700 (“Language refresher / introduction course” up to page 159)

Ada

Exceptions
… introducing:

• Exception handling

• Enumeration types

• Type attributed operators

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 48 of 700 (“Language refresher / introduction course” up to page 159)

A queue specifi cation with proper exceptions

package Queue_Pack_Exceptions is

 QueueSize : constant Positive := 10;

 type Element is (Up, Down, Spin, Turn);
 type Marker is mod QueueSize;
 type List is array (Marker) of Element;

 type Queue_Type is record
 Top, Free : Marker := Marker’First;
 Is_Empty : Boolean := True;
 Elements : List;
 end record;

 procedure Enqueue (Item: Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

 function Is_Empty (Queue : Queue_Type) return Boolean is (Queue.Is_Empty);
 function Is_Full (Queue : Queue_Type) return Boolean is
 (not Queue.Is_Empty and then Queue.Top = Queue.Free);

 Queue_overflow, Queue_underflow : exception;

end Queue_Pack_Exceptions;

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 49 of 700 (“Language refresher / introduction course” up to page 159)

A queue specifi cation with proper exceptions

package Queue_Pack_Exceptions is

 QueueSize : constant Positive := 10;

 type Element is (Up, Down, Spin, Turn);
 type Marker is mod QueueSize;
 type List is array (Marker) of Element;

 type Queue_Type is record
 Top, Free : Marker := Marker’First;
 Is_Empty : Boolean := True;
 Elements : List;
 end record;

 procedure Enqueue (Item: Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

 function Is_Empty (Queue : Queue_Type) return Boolean is (Queue.Is_Empty);
 function Is_Full (Queue : Queue_Type) return Boolean is
 (not Queue.Is_Empty and then Queue.Top = Queue.Free);

 Queue_overflow, Queue_underflow : exception;

end Queue_Pack_Exceptions;

Enumeration types are fi rst-
class types and can be used

e.g. as array indices.

The representation values can be
controlled and do not need to

be continuous (e.g. for purposes
like interfacing with hardware).

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 50 of 700 (“Language refresher / introduction course” up to page 159)

A queue specifi cation with proper exceptions

package Queue_Pack_Exceptions is

 QueueSize : constant Positive := 10;

 type Element is (Up, Down, Spin, Turn);
 type Marker is mod QueueSize;
 type List is array (Marker) of Element;

 type Queue_Type is record
 Top, Free : Marker := Marker’First;
 Is_Empty : Boolean := True;
 Elements : List;
 end record;

 procedure Enqueue (Item: Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

 function Is_Empty (Queue : Queue_Type) return Boolean is (Queue.Is_Empty);
 function Is_Full (Queue : Queue_Type) return Boolean is
 (not Queue.Is_Empty and then Queue.Top = Queue.Free);

 Queue_overflow, Queue_underflow : exception;

end Queue_Pack_Exceptions;
page 50 of 700 (“Language refresher / introduction course” up to page 159)0

Exceptions need to be declared.

Nothing else changes
in the specifi cations.

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 51 of 700 (“Language refresher / introduction course” up to page 159)

A queue specifi cation with proper exceptions

package Queue_Pack_Exceptions is

 QueueSize : constant Positive := 10;

 type Element is (Up, Down, Spin, Turn);
 type Marker is mod QueueSize;
 type List is array (Marker) of Element;

 type Queue_Type is record
 Top, Free : Marker := Marker’First;
 Is_Empty : Boolean := True;
 Elements : List;
 end record;

 procedure Enqueue (Item: Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

 function Is_Empty (Queue : Queue_Type) return Boolean is (Queue.Is_Empty);
 function Is_Full (Queue : Queue_Type) return Boolean is
 (not Queue.Is_Empty and then Queue.Top = Queue.Free);

 Queue_overflow, Queue_underflow : exception;

end Queue_Pack_Exceptions;

… anything on this slide
still not perfectly clear?

© 2015 Uwe R. Zimmer, The Australian National University page 52 of 700 (“Language refresher / introduction course” up to page 159)

A queue implementation with proper exceptions

package body Queue_Pack_Exceptions is

 procedure Enqueue (Item : Element; Queue : in out Queue_Type) is

 begin
 if Is_Full (Queue) then
 raise Queue_overflow;
 end if;

 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Marker’Succ (Queue.Free);
 Queue.Is_Empty := False;
 end Enqueue;

 procedure Dequeue (Item : out Element; Queue : in out Queue_Type) is

 begin
 if Is_Empty (Queue) then
 raise Queue_underflow;
 end if;

 Item := Queue.Elements (Queue.Top);
 Queue.Top := Marker’Succ (Queue.Top);
 Queue.Is_Empty := Queue.Top = Queue.Free;
 end Dequeue;

end Queue_Pack_Exceptions;

© 2015 Uwe R. Zimmer, The Australian National University page 53 of 700 (“Language refresher / introduction course” up to page 159)

A queue implementation with proper exceptions

package body Queue_Pack_Exceptions is

 procedure Enqueue (Item : Element; Queue : in out Queue_Type) is

 begin
 if Is_Full (Queue) then
 raise Queue_overflow;
 end if;

 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Marker’Succ (Queue.Free);
 Queue.Is_Empty := False;
 end Enqueue;

 procedure Dequeue (Item : out Element; Queue : in out Queue_Type) is

 begin
 if Is_Empty (Queue) then
 raise Queue_underflow;
 end if;

 Item := Queue.Elements (Queue.Top);
 Queue.Top := Marker’Succ (Queue.Top);
 Queue.Is_Empty := Queue.Top = Queue.Free;
 end Dequeue;

end Queue_Pack_Exceptions;

Raised exceptions break the control

fl ow and “propagate” to the closest

“exception handler” in the call-chain.

© 2015 Uwe R. Zimmer, The Australian National University page 54 of 700 (“Language refresher / introduction course” up to page 159)

A queue implementation with proper exceptions

package body Queue_Pack_Exceptions is

 procedure Enqueue (Item : Element; Queue : in out Queue_Type) is

 begin
 if Is_Full (Queue) then
 raise Queue_overflow;
 end if;

 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Marker’Succ (Queue.Free);
 Queue.Is_Empty := False;
 end Enqueue;

 procedure Dequeue (Item : out Element; Queue : in out Queue_Type) is

 begin
 if Is_Empty (Queue) then
 raise Queue_underflow;
 end if;

 Item := Queue.Elements (Queue.Top);
 Queue.Top := Marker’Succ (Queue.Top);
 Queue.Is_Empty := Queue.Top = Queue.Free;
 end Dequeue;

end Queue_Pack_Exceptions;

All Types come with a long
list of built-in operators.

Syntactically expressed
as attributes.

Type attributes often make code
more generic: ‘Succ works for
instance on enumeration types

as well … “+ 1” does not.

© 2015 Uwe R. Zimmer, The Australian National University page 55 of 700 (“Language refresher / introduction course” up to page 159)

A queue implementation with proper exceptions

package body Queue_Pack_Exceptions is

 procedure Enqueue (Item : Element; Queue : in out Queue_Type) is

 begin
 if Is_Full (Queue) then
 raise Queue_overflow;
 end if;

 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Marker’Succ (Queue.Free);
 Queue.Is_Empty := False;
 end Enqueue;

 procedure Dequeue (Item : out Element; Queue : in out Queue_Type) is

 begin
 if Is_Empty (Queue) then
 raise Queue_underflow;
 end if;

 Item := Queue.Elements (Queue.Top);
 Queue.Top := Marker’Succ (Queue.Top);
 Queue.Is_Empty := Queue.Top = Queue.Free;
 end Dequeue;

end Queue_Pack_Exceptions;

… anything on this slide
still not perfectly clear?

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 56 of 700 (“Language refresher / introduction course” up to page 159)

A queue test program with proper exceptions

with Queue_Pack_Exceptions; use Queue_Pack_Exceptions;
with Ada.Text_IO ; use Ada.Text_IO;

procedure Queue_Test_Exceptions is
 Queue : Queue_Type;
 Item : Element;

begin
 Enqueue (Turn, Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue); -- will produce a Queue_underflow exception

exception
 when Queue_underflow => Put (“Queue underflow”);
 when Queue_overflow => Put (“Queue overflow”);

end Queue_Test_Exceptions;

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 57 of 700 (“Language refresher / introduction course” up to page 159)

A queue test program with proper exceptions

with Queue_Pack_Exceptions; use Queue_Pack_Exceptions;
with Ada.Text_IO ; use Ada.Text_IO;

procedure Queue_Test_Exceptions is
 Queue : Queue_Type;
 Item : Element;

begin
 Enqueue (Turn, Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue); -- will produce a Queue_underflow exception

exception
 when Queue_underflow => Put (“Queue underflow”);
 when Queue_overflow => Put (“Queue overflow”);

end Queue_Test_Exceptions;

Raised exceptions break the control

fl ow and “propagate” to the closest

“exception handler” in the call-chain.

An exception handler has a choice
to handle, pass, or re-raise the
same or a different exception.

mmer, The Australian National University page 57 of y 700 (“Langu0Zimmer, The Australian National University page 57 ofy 700 (“L0

Control fl ow is continued after the exception handler

in case of a handled exception.

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 58 of 700 (“Language refresher / introduction course” up to page 159)

A queue test program with proper exceptions

with Queue_Pack_Exceptions; use Queue_Pack_Exceptions;
with Ada.Text_IO ; use Ada.Text_IO;

procedure Queue_Test_Exceptions is
 Queue : Queue_Type;
 Item : Element;

begin
 Enqueue (Turn, Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue); -- will produce a Queue_underflow exception

exception
 when Queue_underflow => Put (“Queue underflow”);
 when Queue_overflow => Put (“Queue overflow”);

end Queue_Test_Exceptions;
… anything on this slide
still not perfectly clear?

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 59 of 700 (“Language refresher / introduction course” up to page 159)

A queue specifi cation with proper exceptions

package Queue_Pack_Exceptions is

 QueueSize : constant Positive := 10;

 type Element is (Up, Down, Spin, Turn);
 type Marker is mod QueueSize;
 type List is array (Marker) of Element;

 type Queue_Type is record
 Top, Free : Marker := Marker’First;
 Is_Empty : Boolean := True;
 Elements : List;
 end record;

 procedure Enqueue (Item: Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

 function Is_Empty (Queue : Queue_Type) return Boolean is (Queue.Is_Empty);
 function Is_Full (Queue : Queue_Type) return Boolean is
 (not Queue.Is_Empty and then Queue.Top = Queue.Free);

 Queue_overflow, Queue_underflow : exception;

end Queue_Pack_Exceptions;

This package provides access to
‘internal’ structures which can

lead to inconsistent access.

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 60 of 700 (“Language refresher / introduction course” up to page 159)

Ada

Information hiding
… introducing:

• Private declarations
 needed to compile specifi cations,

yet not accessible for a user of the package.

• Private types assignments and comparisons are allowed

• Limited private types entity cannot be assigned or compared

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 61 of 700 (“Language refresher / introduction course” up to page 159)

A queue specifi cation with proper information hiding
package Queue_Pack_Private is

 QueueSize : constant Integer := 10;

 type Element is new Positive range 1..1000;
 type Queue_Type is limited private;

 procedure Enqueue (Item: Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);
 function Is_Empty (Queue : Queue_Type) return Boolean;
 function Is_Full (Queue : Queue_Type) return Boolean;

 Queueoverflow, Queueunderflow : exception;

private
 type Marker is mod QueueSize;
 type List is array (Marker) of Element;
 type Queue_Type is record
 Top, Free : Marker := Marker’First;
 Is_Empty : Boolean := True;
 Elements : List;
 end record;

end Queue_Pack_Private;

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 62 of 700 (“Language refresher / introduction course” up to page 159)© 2015 Uwe R. Zimmer, The Australian National University page 62 of y 700 (“Language refresher / introduction course” up to page 159)0

A queue specifi cation with proper information hiding
package Queue_Pack_Private is

 QueueSize : constant Integer := 10;

 type Element is new Positive range 1..1000;
 type Queue_Type is limited private;

 procedure Enqueue (Item: Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);
 function Is_Empty (Queue : Queue_Type) return Boolean;
 function Is_Full (Queue : Queue_Type) return Boolean;

 Queueoverflow, Queueunderflow : exception;

private
 type Marker is mod QueueSize;
 type List is array (Marker) of Element;
 type Queue_Type is record
 Top, Free : Marker := Marker’First;
 Is_Empty : Boolean := True;
 Elements : List;
 end record;

end Queue_Pack_Private;

private splits the
specifi cation into a public

and a private section.

The private section is only
here so that the specifi cations
can be separately compiled.

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 63 of 700 (“Language refresher / introduction course” up to page 159)

A queue specifi cation with proper information hiding
package Queue_Pack_Private is

 QueueSize : constant Integer := 10;

 type Element is new Positive range 1..1000;
 type Queue_Type is limited private;

 procedure Enqueue (Item: Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);
 function Is_Empty (Queue : Queue_Type) return Boolean;
 function Is_Full (Queue : Queue_Type) return Boolean;

 Queueoverflow, Queueunderflow : exception;

private
 type Marker is mod QueueSize;
 type List is array (Marker) of Element;
 type Queue_Type is record
 Top, Free : Marker := Marker’First;
 Is_Empty : Boolean := True;
 Elements : List;
 end record;

end Queue_Pack_Private;

Queue_Type can now be used out-
side this package without any way

to access its internal structure.

limited disables assignments and
comparisons for this type.

A user of this package would
now e.g. not be able to make a

copy of a Queue_Type value.

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 64 of 700 (“Language refresher / introduction course” up to page 159)

A queue specifi cation with proper information hiding
package Queue_Pack_Private is

 QueueSize : constant Integer := 10;

 type Element is new Positive range 1..1000;
 type Queue_Type is limited private;

 procedure Enqueue (Item: Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);
 function Is_Empty (Queue : Queue_Type) return Boolean;
 function Is_Full (Queue : Queue_Type) return Boolean;

 Queueoverflow, Queueunderflow : exception;

private
 type Marker is mod QueueSize;
 type List is array (Marker) of Element;
 type Queue_Type is record
 Top, Free : Marker := Marker’First;
 Is_Empty : Boolean := True;
 Elements : List;
 end record;

end Queue_Pack_Private;

Queue_Type can now be used out-
side this package without any way

to access its internal structure.

Alternatively ‘=’ and ‘:=’ operations

can be replaced with type-specifi c
versions (overloaded) or default

operations can be allowed.

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 65 of 700 (“Language refresher / introduction course” up to page 159)

A queue specifi cation with proper information hiding
package Queue_Pack_Private is

 QueueSize : constant Integer := 10;

 type Element is new Positive range 1..1000;
 type Queue_Type is limited private;

 procedure Enqueue (Item: Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);
 function Is_Empty (Queue : Queue_Type) return Boolean;
 function Is_Full (Queue : Queue_Type) return Boolean;

 Queueoverflow, Queueunderflow : exception;

private
 type Marker is mod QueueSize;
 type List is array (Marker) of Element;
 type Queue_Type is record
 Top, Free : Marker := Marker’First;
 Is_Empty : Boolean := True;
 Elements : List;
 end record;

end Queue_Pack_Private;

… anything on this slide
still not perfectly clear?

© 2015 Uwe R. Zimmer, The Australian National University page 66 of 700 (“Language refresher / introduction course” up to page 159)

A queue implementation with proper information hiding
package body Queue_Pack_Private is

 procedure Enqueue (Item: Element; Queue: in out Queue_Type) is
 begin

 if Queue.State = Filled and Queue.Top = Queue.Free then
 raise Queueoverflow;
 end if;

 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Marker’Pred (Queue.Free);
 Queue.Is_Empty := False;
 end Enqueue;

 procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is
 begin

 if Queue.State = Empty then raise Queueunderflow; end if;

 Item := Queue.Elements (Queue.Top);
 Queue.Top := Marker’Pred (Queue.Top);
 Queue.Is_Empty := Queue.Top = Queue.Free;
 end Dequeue;

 function Is_Empty (Queue : Queue_Type) return Boolean is (Queue.Is_Empty);
 function Is_Full (Queue : Queue_Type) return Boolean is
 (not Queue.Is_Empty and then Queue.Top = Queue.Free);

end Queue_Pack_Private;

Enqueue (Item: Element; Queue: in out Queue_Type) iiiiiiiiiiiis

ue.State = Filled and Queue.Top = Queue.Free then
se Queueoverflow;

Elements (Queue.Free) := Item;
Free := Marker’’PPPPPrrrrrrrrreeeeeeeeeddd (Queue.Free);
s_Empty := False;
ue;

Dequeue (Item: out Element; Queue: in out Queue_Type) is

tate = Empty ttthhhhhhhhhheeeeeee rrrrrrrraaaaaaaaaiiiiiiiise Queueunderflow; end if;

 := Queue.Elements (Queue.Top);

ue.S

Empt

= Queu

uttttttttttt E

Top := Marker’Pred (Queue.Top);
s_Empty := Queue.Top = Queue.Free;
ue;

ttyy

SSSSSSttttta

ttttttyyyyyyyyyyyyyy :

em

y

IIIIt

= QQ euuu

IIIItttttteeem

=============== Em ttttttyyyyyy

:::====== QQ eeeeeuuuuuuuuuuuuuueee.
Ma

EEEEttttuuuuuuuuuuuuuuttttttttttttt EEEEEEEEEEEEEEllllle

thhhheennnnnn ra

nt e

aaalllllll

eeennnnnnt QQQQQQQQQQQQuuuuuuuuuueu

rr Prr’’’’PPPPPPPPPPPPPrrrrrrrrrre ((((((Q eeeeuuuuee....FFFFFFFFFFFrrrrrrrrrrrrre

eeee)eeeeeeeeeeeee)))))))))))))))

© 2015 Uwe R. Zimmer, The Australian National University page 67 of 700 (“Language refresher / introduction course” up to page 159)

A queue implementation with proper information hiding
package body Queue_Pack_Private is

 procedure Enqueue (Item: Element; Queue: in out Queue_Type) is
 begin

 if Queue.State = Filled and Queue.Top = Queue.Free then
 raise Queueoverflow;
 end if;

 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Marker’Pred (Queue.Free);
 Queue.Is_Empty := False;
 end Enqueue;

 procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is
 begin

 if Queue.State = Empty then raise Queueunderflow; end if;

 Item := Queue.Elements (Queue.Top);
 Queue.Top := Marker’Pred (Queue.Top);
 Queue.Is_Empty := Queue.Top = Queue.Free;
 end Dequeue;

 function Is_Empty (Queue : Queue_Type) return Boolean is (Queue.Is_Empty);
 function Is_Full (Queue : Queue_Type) return Boolean is
 (not Queue.Is_Empty and then Queue.Top = Queue.Free);

end Queue_Pack_Private;

Enqueue (Item: Element; Queue: in out Queue_Type) iiiiiiiiiiiis

ue.State = Filled and Queue.Top = Queue.Free then
se Queueoverflow;

Elements (Queue.Free) := Item;
Free := Marker’’PPPPPrrrrrrrrreeeeeeeeeddd (Queue.Free);
s_Empty := False;
ue;

Dequeue (Item: out Element; Queue: in out Queue_Type) is

tate = Empty ttthhhhhhhhhheeeeeee rrrrrrrraaaaaaaaaiiiiiiiise Queueunderflow; ue.S end if;

 := Queue.Elements (Queue.Top);
Top := Marker’Pred (Queue.Top);
s_Empty := Queue.Top = Queue.Free;
ue;

Empt

= Queu

uttttttttttt E

ttyy

SSSSSSttttta

ttttttyyyyyyyyyyyyyy :

em

y

IIIIt

= QQ euuu

IIIItttttteeem

=============== Em ttttttyyyyyy

:::====== QQ eeeeeuuuuuuuuuuuuuueee.
Ma

EEEEttttuuuuuuuuuuuuuuttttttttttttt EEEEEEEEEEEEEEllllle

thhhheennnnnn ra

nt e

aaalllllll

eeennnnnnt QQQQQQQQQQQQuuuuuuuuuueu

rr Prr’’’’PPPPPPPPPPPPPrrrrrrrrrre ((((((Q eeeeuuuuee....FFFFFFFFFFFrrrrrrrrrrrrre

eeee)eeeeeeeeeeeee)))))))))))))))

olean iiiiiiiiss (Queue Is Empty);

… besides the implementation of the

two functions which has been moved

to the implementation section.

© 2015 Uwe R. Zimmer, The Australian National University page 68 of 700 (“Language refresher / introduction course” up to page 159)

A queue implementation with proper information hiding
package body Queue_Pack_Private is

 procedure Enqueue (Item: Element; Queue: in out Queue_Type) is
 begin

 if Queue.State = Filled and Queue.Top = Queue.Free then
 raise Queueoverflow;
 end if;

 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Marker’Pred (Queue.Free);
 Queue.Is_Empty := False;
 end Enqueue;

 procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is
 begin

 if Queue.State = Empty then raise Queueunderflow; end if;

 Item := Queue.Elements (Queue.Top);
 Queue.Top := Marker’Pred (Queue.Top);
 Queue.Is_Empty := Queue.Top = Queue.Free;
 end Dequeue;

 function Is_Empty (Queue : Queue_Type) return Boolean is (Queue.Is_Empty);
 function Is_Full (Queue : Queue_Type) return Boolean is
 (not Queue.Is_Empty and then Queue.Top = Queue.Free);

end Queue_Pack_Private;

Enqueue (Item: Element; Queue: in out Queue_Type) iiiiiiiiiiiis

ue.State = Filled and Queue.Top = Queue.Free then
se Queueoverflow;

Elements (Queue.Free) := Item;
Free := Marker’’PPPPPrrrrrrrrreeeeeeeeeddd (Queue.Free);
s_Empty := False;
ue;

Dequeue (Item: out Element; Queue: in out Queue_Type) is

tate = Empty ttthhhhhhhhhheeeeeee rrrrrrrraaaaaaaaaiiiiiiiise Queueunderflow; end ifue.S Empt

uttttttttttt E

;

 := Queue.Elements (Queue.Top);
Top := Marker’Pred (Queue.Top);
s_Empty := Queue.Top = Queue.Free;
ue;

ttyy

SSSSSSttttta

ttttttyyyyyyyyyyyyyy :

em

y

IIIIt

= QQ euuu

IIIItttttteeem

=============== Em ttttttyyyyyy

:::====== QQ eeeeeuuuuuuuuuuuuuueee.
Ma

EEEEttttuuuuuuuuuuuuuuttttttttttttt EEEEEEEEEEEEEEllllle

thhhheennnnnn ra

nt e

aaalllllll

eeennnnnnt QQQQQQQQQQQQuuuuuuuuuueu

rr Prr’’’’PPPPPPPPPPPPPrrrrrrrrrre ((((((Q eeeeuuuuee....FFFFFFFFFFFrrrrrrrrrrrrre

eeee)eeeeeeeeeeeee)))))))))))))))

age refresher / introduction course” up to page 159)

… anything on this slide
still not perfectly clear?

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 69 of 700 (“Language refresher / introduction course” up to page 159)

A queue test program with proper information hiding

with Queue_Pack_Private; use Queue_Pack_Private;
with Ada.Text_IO ; use Ada.Text_IO;

procedure Queue_Test_Private is

 Queue, Queue_Copy : Queue_Type;
 Item : Element;

begin
 Queue_Copy := Queue;
 -- compiler-error: “left hand of assignment must not be limited type”

 Enqueue (Item => 1, Queue => Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue); -- would produce a “Queue underflow”

exception
 when Queueunderflow => Put (“Queue underflow”);
 when Queueoverflow => Put (“Queue overflow”);
end Queue_Test_Private;

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 70 of 700 (“Language refresher / introduction course” up to page 159)

A queue test program with proper information hiding

with Queue_Pack_Private; use Queue_Pack_Private;
with Ada.Text_IO ; use Ada.Text_IO;

procedure Queue_Test_Private is

 Queue, Queue_Copy : Queue_Type;
 Item : Element;

begin
 Queue_Copy := Queue;
 -- compiler-error: “left hand of assignment must not be limited type”

 Enqueue (Item => 1, Queue => Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue); -- would produce a “Queue underflow”

exception
 when Queueunderflow => Put (“Queue underflow”);
 when Queueoverflow => Put (“Queue overflow”);
end Queue_Test_Private;

Illegal operation on a limited type.

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 71 of 700 (“Language refresher / introduction course” up to page 159)

A queue test program with proper information hiding

with Queue_Pack_Private; use Queue_Pack_Private;
with Ada.Text_IO ; use Ada.Text_IO;

procedure Queue_Test_Private is

 Queue, Queue_Copy : Queue_Type;
 Item : Element;

begin
 Queue_Copy := Queue;
 -- compiler-error: “left hand of assignment must not be limited type”

 Enqueue (Item => 1, Queue => Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue); -- would produce a “Queue underflow”

exception
 when Queueunderflow => Put (“Queue underflow”);
 when Queueoverflow => Put (“Queue overflow”);
end Queue_Test_Private;

71 of 700 (“Language refresher / introduction course” up to page 159)0

Parameters can be named or
passed by order of defi nition.

(Named parameters do not need
to follow the defi nition order.)

uce a “Queue underflow”

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 72 of 700 (“Language refresher / introduction course” up to page 159)

A queue test program with proper information hiding

with Queue_Pack_Private; use Queue_Pack_Private;
with Ada.Text_IO ; use Ada.Text_IO;

procedure Queue_Test_Private is

 Queue, Queue_Copy : Queue_Type;
 Item : Element;

begin
 Queue_Copy := Queue;
 -- compiler-error: “left hand of assignment must not be limited type”

 Enqueue (Item => 1, Queue => Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue); -- would produce a “Queue underflow”

exception
 when Queueunderflow => Put (“Queue underflow”);
 when Queueoverflow => Put (“Queue overflow”);
end Queue_Test_Private;

… anything on this slide
still not perfectly clear?

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 73 of 700 (“Language refresher / introduction course” up to page 159)

Ada

Contracts
… introducing:

• Pre- and Post-Conditions on methods

• Invariants on types

• For all, For any predicates

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 74 of 700 (“Language refresher / introduction course” up to page 159)

A contracting queue specifi cation
package Queue_Pack_Contract is
 Queue_Size : constant Positive := 10;
 type Element is new Positive range 1 .. 1000;
 type Queue_Type is private;

 procedure Enqueue (Item : Element; Q : in out Queue_Type) with
 Pre => not Is_Full (Q),
 Post => not Is_Empty (Q) and then Length (Q) = Length (Q’Old) + 1
 and then Lookahead (Q, Length (Q)) = Item
 and then (for all ix in 1 .. Length (Q’Old)
 => Lookahead (Q, ix) = Lookahead (Q’Old, ix));

 procedure Dequeue (Item : out Element; Q : in out Queue_Type) with
 Pre => not Is_Empty (Q),
 Post => not Is_Full (Q) and then Length (Q) = Length (Q’Old) - 1
 and then (for all ix in 1 .. Length (Q)
 => Lookahead (Q, ix) = Lookahead (Q’Old, ix + 1));

 function Is_Empty (Q : Queue_Type) return Boolean;
 function Is_Full (Q : Queue_Type) return Boolean;
 function Length (Q : Queue_Type) return Natural;
 function Lookahead (Q : Queue_Type; Depth : Positive) return Element;

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 75 of 700 (“Language refresher / introduction course” up to page 159)

A contracting queue specifi cation
package Queue_Pack_Contract is
 Queue_Size : constant Positive := 10;
 type Element is new Positive range 1 .. 1000;
 type Queue_Type is private;

 procedure Enqueue (Item : Element; Q : in out Queue_Type) with
 Pre => not Is_Full (Q),
 Post => not Is_Empty (Q) and then Length (Q) = Length (Q’Old) + 1
 and then Lookahead (Q, Length (Q)) = Item
 and then (for all ix in 1 .. Length (Q’Old)
 => Lookahead (Q, ix) = Lookahead (Q’Old, ix));

 procedure Dequeue (Item : out Element; Q : in out Queue_Type) with
 Pre => not Is_Empty (Q),
 Post => not Is_Full (Q) and then Length (Q) = Length (Q’Old) - 1
 and then (for all ix in 1 .. Length (Q)
 => Lookahead (Q, ix) = Lookahead (Q’Old, ix + 1));

 function Is_Empty (Q : Queue_Type) return Boolean;
 function Is_Full (Q : Queue_Type) return Boolean;
 function Length (Q : Queue_Type) return Natural;
 function Lookahead (Q : Queue_Type; Depth : Positive) return Element;

Pre- and Post-predicates are
checked before and after

each execution resp.

atural;
P iti) ret rn El t

oolean;oolean;
oolean;
atural;

6 and 7 quantifi ers are expressed as

“for all” and “for some” expressions resp.

Old i))

Original
(Pre) values
can still be
referred to.

with

) + 1

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 76 of 700 (“Language refresher / introduction course” up to page 159)

A contracting queue specifi cation
package Queue_Pack_Contract is
 Queue_Size : constant Positive := 10;
 type Element is new Positive range 1 .. 1000;
 type Queue_Type is private;

 procedure Enqueue (Item : Element; Q : in out Queue_Type) with
 Pre => not Is_Full (Q),
 Post => not Is_Empty (Q) and then Length (Q) = Length (Q’Old) + 1
 and then Lookahead (Q, Length (Q)) = Item
 and then (for all ix in 1 .. Length (Q’Old)
 => Lookahead (Q, ix) = Lookahead (Q’Old, ix));

 procedure Dequeue (Item : out Element; Q : in out Queue_Type) with
 Pre => not Is_Empty (Q),
 Post => not Is_Full (Q) and then Length (Q) = Length (Q’Old) - 1
 and then (for all ix in 1 .. Length (Q)
 => Lookahead (Q, ix) = Lookahead (Q’Old, ix + 1));

 function Is_Empty (Q : Queue_Type) return Boolean;
 function Is_Full (Q : Queue_Type) return Boolean;
 function Length (Q : Queue_Type) return Natural;
 function Lookahead (Q : Queue_Type; Depth : Positive) return Element;

… anything on this slide
still not perfectly clear?

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 77 of 700 (“Language refresher / introduction course” up to page 159)

A contracting queue specifi cation (cont.)
private
 type Marker is mod Queue_Size;
 type List is array (Marker) of Element;

 type Queue_Type is record
 Top, Free : Marker := Marker’First;
 Is_Empty : Boolean := True;
 Elements : List; -- will be initialized to invalids
 end record with Type_Invariant
 => (not Queue_Type.Is_Empty or else Queue_Type.Top = Queue_Type.Free)
 and then (for all ix in 1 .. Length (Queue_Type)
 => Lookahead (Queue_Type, ix)’Valid);

 function Is_Empty (Q : Queue_Type) return Boolean is (Q.Is_Empty);
 function Is_Full (Q : Queue_Type) return Boolean is
 (not Q.Is_Empty and then Q.Top = Q.Free);
 function Length (Q : Queue_Type) return Natural is
 (if Is_Full (Q) then Queue_Size else Natural (Q.Free - Q.Top));
 function Lookahead (Q : Queue_Type; Depth : Positive) return Element is
 (Q.Elements (Q.Top + Marker (Depth - 1)));
end Queue_Pack_Contract;

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 78 of 700 (“Language refresher / introduction course” up to page 159)

A contracting queue specifi cation (cont.)
private
 type Marker is mod Queue_Size;
 type List is array (Marker) of Element;

 type Queue_Type is record
 Top, Free : Marker := Marker’First;
 Is_Empty : Boolean := True;
 Elements : List; -- will be initialized to invalids
 end record with Type_Invariant
 => (not Queue_Type.Is_Empty or else Queue_Type.Top = Queue_Type.Free)
 and then (for all ix in 1 .. Length (Queue_Type)
 => Lookahead (Queue_Type, ix)’Valid);

 function Is_Empty (Q : Queue_Type) return Boolean is (Q.Is_Empty);
 function Is_Full (Q : Queue_Type) return Boolean is
 (not Q.Is_Empty and then Q.Top = Q.Free);
 function Length (Q : Queue_Type) return Natural is
 (if Is_Full (Q) then Queue_Size else Natural (Q.Free - Q.Top));
 function Lookahead (Q : Queue_Type; Depth : Positive) return Element is
 (Q.Elements (Q.Top + Marker (Depth - 1)));
end Queue_Pack_Contract;

Type-Invariants are checked
on return from any operation

defi ned in the public part.

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 79 of 700 (“Language refresher / introduction course” up to page 159)

A contracting queue specifi cation (cont.)
private
 type Marker is mod Queue_Size;
 type List is array (Marker) of Element;

 type Queue_Type is record
 Top, Free : Marker := Marker’First;
 Is_Empty : Boolean := True;
 Elements : List; -- will be initialized to invalids
 end record with Type_Invariant
 => (not Queue_Type.Is_Empty or else Queue_Type.Top = Queue_Type.Free)
 and then (for all ix in 1 .. Length (Queue_Type)
 => Lookahead (Queue_Type, ix)’Valid);

 function Is_Empty (Q : Queue_Type) return Boolean is (Q.Is_Empty);
 function Is_Full (Q : Queue_Type) return Boolean is
 (not Q.Is_Empty and then Q.Top = Q.Free);
 function Length (Q : Queue_Type) return Natural is
 (if Is_Full (Q) then Queue_Size else Natural (Q.Free - Q.Top));
 function Lookahead (Q : Queue_Type; Depth : Positive) return Element is
 (Q.Elements (Q.Top + Marker (Depth - 1)));
end Queue_Pack_Contract;

… anything on this slide
still not perfectly clear?

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 80 of 700 (“Language refresher / introduction course” up to page 159)

A contracting queue implementation

package body Queue_Pack_Contract is

 procedure Enqueue (Item : Element; Q : in out Queue_Type) is

 begin
 Q.Elements (Q.Free) := Item;
 Q.Free := Q.Free + 1;
 Q.Is_Empty := False;
 end Enqueue;

 procedure Dequeue (Item : out Element; Q : in out Queue_Type) is

 begin
 Item := Q.Elements (Q.Top);
 Q.Top := Q.Top + 1;
 Q.Is_Empty := Q.Top = Q.Free;
 end Dequeue;

end Queue_Pack_Contract;

Queue_Pack_Contract is

Enqueue (Item : Element; Q : in out Queue_Type) is

ents (Q.Free) := Item;
 := Q.Free + 1;
mpty := False;
ue;

Dequeue (Item : out Element; Q : iiiiiiiiiiiinnnnnnn oooooooooooout Queue_Type) is

 := Q.Elements (Q.Top);
 := Q.Top + 1;
mpty := Q.Top = Q.Free;
ue;

ck_Contract;

Elem
Top +
Top =

tt

:
=

 :
::::::=

tttttttttttttr

Q

((((IIIIIIII

To

em

(((((((IIIIIIIIIIIIIIIt

EEEEEEEEEEEEllllllllllllleeeeeeeeeeeeemmmme
...........Top ++++++ 1
..TTTTTTo QQQQ.F

Toootssssssssss TTooooooooooooo)))

leeeeellllllllllllllllllllllleeeeeemmmmen ; Q

)))))))))))));

iin

))))))

No checks in the implementation part,

as all required conditions have been

guaranteed via the specifi cations.

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 81 of 700 (“Language refresher / introduction course” up to page 159)

A contracting queue test program

with Ada.Text_IO; use Ada.Text_IO;
with Exceptions; use Exceptions;
with Queue_Pack_Contract; use Queue_Pack_Contract;
with System.Assertions; use System.Assertions;

procedure Queue_Test_Contract is
 Queue : Queue_Type;
 Item : Element;

begin
 Enqueue (Item => 1, Q => Queue);
 Enqueue (Item => 2, Q => Queue);
 Dequeue (Item, Queue); Put (Element’Image (Item));
 Dequeue (Item, Queue); Put (Element’Image (Item));
 Dequeue (Item, Queue); -- will produce an Assert_Failure

 Put (Element’Image (Item));
 Put (“Queue is empty on exit: “); Put (Boolean’Image (Is_Empty (Queue)));

exception
 when Exception_Id : Assert_Failure => Show_Exception (Exception_Id);

end Queue_Test_Contract;

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 82 of 700 (“Language refresher / introduction course” up to page 159)

A contracting queue test program

with Ada.Text_IO; use Ada.Text_IO;
with Exceptions; use Exceptions;
with Queue_Pack_Contract; use Queue_Pack_Contract;
with System.Assertions; use System.Assertions;

procedure Queue_Test_Contract is
 Queue : Queue_Type;
 Item : Element;

begin
 Enqueue (Item => 1, Q => Queue);
 Enqueue (Item => 2, Q => Queue);
 Dequeue (Item, Queue); Put (Element’Image (Item));
 Dequeue (Item, Queue); Put (Element’Image (Item));
 Dequeue (Item, Queue); -- will produce an Assert_Failure

 Put (Element’Image (Item));
 Put (“Queue is empty on exit: “); Put (Boolean’Image (Is_Empty (Queue)));

exception
 when Exception_Id : Assert_Failure => Show_Exception (Exception_Id);

end Queue_Test_Contract;

Violated Pre-condition will raise
an assert failure exception.

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 83 of 700 (“Language refresher / introduction course” up to page 159)

A contracting queue test program

with Ada.Text_IO; use Ada.Text_IO;
with Exceptions; use Exceptions;
with Queue_Pack_Contract; use Queue_Pack_Contract;
with System.Assertions; use System.Assertions;

procedure Queue_Test_Contract is
 Queue : Queue_Type;
 Item : Element;

begin
 Enqueue (Item => 1, Q => Queue);
 Enqueue (Item => 2, Q => Queue);
 Dequeue (Item, Queue); Put (Element’Image (Item));
 Dequeue (Item, Queue); Put (Element’Image (Item));
 Dequeue (Item, Queue); -- will produce an Assert_Failure

 Put (Element’Image (Item));
 Put (“Queue is empty on exit: “); Put (Boolean’Image (Is_Empty (Queue)));

exception
 when Exception_Id : Assert_Failure => Show_Exception (Exception_Id);

end Queue_Test_Contract;

… anything on this slide
still not perfectly clear?

© 2015 Uwe R. Zimmer, The Australian National University page 84 of 700 (chapter 2: “Language refresher / introduction course” up to page 159)

A contracted queue specifi cation
package Queue_Pack_Contract is
 (…)
 procedure Enqueue (Item : Element; Q : in out Queue_Type) with
 Pre => not Is_Full (Q), -- could also be “=> True” according to specifications
 Post => not Is_Empty (Q) and then Length (Q) = Length (Q’Old) + 1
 and then Lookahead (Q, Length (Q)) = Item
 and then (for all ix in 1 .. Length (Q’Old)
 => Lookahead (Q, ix) = Lookahead (Q’Old, ix));

 procedure Dequeue (Item : out Element; Q : in out Queue_Type) with
 Pre => not Is_Empty (Q), -- could also be “=> True” according to specifications
 Post => not Is_Full (Q) and then Length (Q) = Length (Q’Old) - 1
 and then (for all ix in 1 .. Length (Q)
 => Lookahead (Q, ix) = Lookahead (Q’Old, ix + 1));
 (…)
 type Queue_Type is record
 Top, Free : Marker := Marker’First;
 Is_Empty : Boolean := True;
 Elements : List;
 end record with Type_Invariant =>
 (not Queue_Type.Is_Empty or else Queue_Type.Top = Queue_Type.Free)
 and then (for all ix in 1 .. Length (Queue_Type)
 => Lookahead (Queue_Type, ix)’Valid);
 (…)

Those contracts can be used to fully specify

operations and types. Specifi cations should be

complete, consistent and canonical, while using

as little implementation details as possible.

ttttt Queue_Type) wwwwwwwiiiiiiitttttttthhhhhhhht Queue Type) with

ueue specifi cation

t Queue Type) witht Queue Type) ith

u

t Queue Type) with

ue Exceptions are commonly preferred to

handle rare, yet valid situations.

Contracts are commonly used to test program

correctness with respect to its specifi cations.

o be
ooooouuuuuou

euueeee

Con
cor
ououou

tracted qu

ement
c

ueuuu

eme

eue

could also
ttthhhhhhhen Lengt

t; Q :
could also

iiiiiiiiiiinnnn iiiiin
c

inin

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 85 of 700 (“Language refresher / introduction course” up to page 159)

Ada

Generic (polymorphic) packages
… introducing:

• Specifi cation of generic packages

• Instantiation of generic packages

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 86 of 700 (“Language refresher / introduction course” up to page 159)

A generic queue specifi cation
generic
 type Element is private;

package Queue_Pack_Generic is
 QueueSize: constant Integer := 10;
 type Queue_Type is limited private;

 procedure Enqueue (Item: Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);
 function Is_Empty (Queue : Queue_Type) return Boolean;
 function Is_Full (Queue : Queue_Type) return Boolean;
 Queueoverflow, Queueunderflow : exception;
private
 type Marker is mod QueueSize;
 type List is array (Marker) of Element;
 type Queue_Type is record
 Top, Free : Marker := Marker’First;
 Is_Empty : Boolean := True;
 Elements : List;
 end record;
end Queue_Pack_Generic;

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 87 of 700 (“Language refresher / introduction course” up to page 159)

A generic queue specifi cation
generic
 type Element is private;

package Queue_Pack_Generic is
 QueueSize: constant Integer := 10;
 type Queue_Type is limited private;

 procedure Enqueue (Item: Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);
 function Is_Empty (Queue : Queue_Type) return Boolean;
 function Is_Full (Queue : Queue_Type) return Boolean;
 Queueoverflow, Queueunderflow : exception;
private
 type Marker is mod QueueSize;
 type List is array (Marker) of Element;
 type Queue_Type is record
 Top, Free : Marker := Marker’First;
 Is_Empty : Boolean := True;
 Elements : List;
 end record;
end Queue_Pack_Generic;

The type of Element now becomes a

parameter of a generic package.

Haskell syntax:

enqueue :: a -> Queue a -> Queue a

H k ll t

No restrictions (private) have
been set for the type of Element.

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 88 of 700 (“Language refresher / introduction course” up to page 159)

A generic queue specifi cation
generic
 type Element is private;

package Queue_Pack_Generic is
 QueueSize: constant Integer := 10;
 type Queue_Type is limited private;

 procedure Enqueue (Item: Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);
 function Is_Empty (Queue : Queue_Type) return Boolean;
 function Is_Full (Queue : Queue_Type) return Boolean;
 Queueoverflow, Queueunderflow : exception;
private
 type Marker is mod QueueSize;
 type List is array (Marker) of Element;
 type Queue_Type is record
 Top, Free : Marker := Marker’First;
 Is_Empty : Boolean := True;
 Elements : List;
 end record;
end Queue_Pack_Generic;

B
B

n out Queue_Type);
n out Queue_Type);
Boolean;
Boolean;

Generic aspects can include:

• Type categories

• Incomplete types

• Constants

• Procedures and functions

• Other packages

• Objects (interfaces)

Default values can be provided
(making those parameters optional)

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 89 of 700 (“Language refresher / introduction course” up to page 159)

A generic queue specifi cation
generic
 type Element is private;

package Queue_Pack_Generic is
 QueueSize: constant Integer := 10;
 type Queue_Type is limited private;

 procedure Enqueue (Item: Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);
 function Is_Empty (Queue : Queue_Type) return Boolean;
 function Is_Full (Queue : Queue_Type) return Boolean;
 Queueoverflow, Queueunderflow : exception;
private
 type Marker is mod QueueSize;
 type List is array (Marker) of Element;
 type Queue_Type is record
 Top, Free : Marker := Marker’First;
 Is_Empty : Boolean := True;
 Elements : List;
 end record;
end Queue_Pack_Generic;

… anything on this slide
still not perfectly clear?

© 2015 Uwe R. Zimmer, The Australian National University page 90 of 700 (“Language refresher / introduction course” up to page 159)

A generic queue implementation

package body Queue_Pack_Generic is

 procedure Enqueue (Item: Element; Queue: in out Queue_Type) is
 begin

 if Queue.State = Filled and Queue.Top = Queue.Free then
 raise Queueoverflow;
 end if;

 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Marker’Pred (Queue.Free);
 Queue.Is_Empty := False;
 end Enqueue;

 procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is
 begin

 if Queue.State = Empty then raise Queueunderflow; end if;

 Item := Queue.Elements (Queue.Top);
 Queue.Top := Marker’Pred (Queue.Top);
 Queue.Is_Empty := Queue.Top = Queue.Free;
 end Dequeue;

 function Is_Empty (Queue : Queue_Type) return Boolean is (Queue.Is_Empty);
 function Is_Full (Queue : Queue_Type) return Boolean is
 (not Queue.Is_Empty and then Queue.Top = Queue.Free);
end Queue_Pack_Generic;

nqueue (Item: Element; Queue: in out Queue_Type) is

.State = Filled and Queue.Top = Queue.Free then
Queueoverflow;

ements (Queue.Free) := Item;
ee := MMaarrkkeerr’’PPrreedd (Queue.Free);
_Empty := False;
;

equeue (Item: out Element; Queue: iiiiiiiiiiiiiiinnnnnnnnnnnnnn oooout Queue_Type) is

.State = Em ttttttttheennnnnnnnnnnnn raissssssssssseeeeeeee Queueunderflow; end if;

 := Queue.Elements (Queue.Top);
:=

.St

p MMaarrkkeerr’’PPrreedd (Queue.Top);
_Empty := Queue.Top = Queue.Free;
;

mpty

Queue
aarrkkee

SS.................SSSSSSSSSSSSSttttttttttttta

:::::= Q

EEEElllll

tt

rrrrrrrrrrrrkkkkkkkkkkkkeeee

ttttttttttttttteeeeeeeeeeeeem

EEEEEEEEEEEEEmmmmmmmmmmmmmppppttyyyyyy

== Que ee.......EEEElllllllll
MMMMMaaarrrrrrrkkkkkkkkkkkkkeeeeeeeeeeeeeerr’’

iii

EEElllllleemEEEEEEElllllleeeeem

hhheeeeeeeenn aaiiiiiiiiiiiiiiss

ennnn uennnnnnttttt; ueeeeeeeu

ee

ddddddd

i

(((((((((((((((QQQQQu eeuuuueeeeeee. eeeeeeeeeeee))))))))))

iiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 91 of 700 (“Language refresher / introduction course” up to page 159)

A generic queue test program

with Queue_Pack_Generic; -- cannot apply ‘use’ clause here
with Ada.Text_IO ; use Ada.Text_IO;

procedure Queue_Test_Generic is

 package Queue_Pack_Positive is
 new Queue_Pack_Generic (Element => Positive);
 use Queue_Pack_Positive; -- ‘use’ clause can be applied to instantiated package

 Queue : Queue_Type;
 Item : Positive;

begin
 Enqueue (Item => 1, Queue => Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue); -- will produce a “Queue underflow”

exception
 when Queueunderflow => Put (“Queue underflow”);
 when Queueoverflow => Put (“Queue overflow”);
end Queue_Test_Generic;

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 92 of 700 (“Language refresher / introduction course” up to page 159)

A generic queue test program

with Queue_Pack_Generic; -- cannot apply ‘use’ clause here
with Ada.Text_IO ; use Ada.Text_IO;

procedure Queue_Test_Generic is

 package Queue_Pack_Positive is
 new Queue_Pack_Generic (Element => Positive);
 use Queue_Pack_Positive; -- ‘use’ clause can be applied to instantiated package

 Queue : Queue_Type;
 Item : Positive;

begin
 Enqueue (Item => 1, Queue => Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue); -- will produce a “Queue underflow”

exception
 when Queueunderflow => Put (“Queue underflow”);
 when Queueoverflow => Put (“Queue overflow”);
end Queue_Test_Generic;

Instantiate generic package

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 93 of 700 (“Language refresher / introduction course” up to page 159)

A generic queue test program

with Queue_Pack_Generic; -- cannot apply ‘use’ clause here
with Ada.Text_IO ; use Ada.Text_IO;

procedure Queue_Test_Generic is

 package Queue_Pack_Positive is
 new Queue_Pack_Generic (Element => Positive);
 use Queue_Pack_Positive; -- ‘use’ clause can be applied to instantiated package

 Queue : Queue_Type;
 Item : Positive;

begin
 Enqueue (Item => 1, Queue => Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue); -- will produce a “Queue underflow”

exception
 when Queueunderflow => Put (“Queue underflow”);
 when Queueoverflow => Put (“Queue overflow”);
end Queue_Test_Generic;

… anything on this slide
still not perfectly clear?

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 94 of 700 (“Language refresher / introduction course” up to page 159)

A generic queue specifi cation
generic
 type Element is private;

package Queue_Pack_Generic is
 QueueSize: constant Integer := 10;
 type Queue_Type is limited private;

 procedure Enqueue (Item: Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);
 function Is_Empty (Queue : Queue_Type) return Boolean;
 function Is_Full (Queue : Queue_Type) return Boolean;
 Queueoverflow, Queueunderflow : exception;
private
 type Marker is mod QueueSize;
 type List is array (Marker) of Element;
 type Queue_Type is record
 Top, Free : Marker := Marker’First;
 Is_Empty : Boolean := True;
 Elements : List;
 end record;
end Queue_Pack_Generic;

None of the packages so far can be

used in a concurrent environment.

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 95 of 700 (“Language refresher / introduction course” up to page 159)

Ada

Access routines for concurrent systems
… introducing:

• Protected objects

• Entry guards

• Side-effecting (mutually exclusive) entry and procedure calls

• Side-effect-free (concurrent) function calls

© 2015 Uwe R. Zimmer, The Australian National University page 96 of 700 (“Language refresher / introduction course” up to page 159)

A generic protected queue specifi cation

generic
 type Element is private;
 type Index is mod <>; -- Modulo defines size of the queue.

package Queue_Pack_Protected_Generic is

 type Queue_Type is limited private;

 protected type Protected_Queue is
 entry Enqueue (Item : Element);
 entry Dequeue (Item : out Element);
 procedure Empty_Queue;
 function Is_Empty return Boolean;
 function Is_Full return Boolean;
 private
 Queue : Queue_Type;
 end Protected_Queue;

private
 type List is array (Index) of Element;
 type Queue_Type is record
 Top, Free : Index := Index’First;
 Is_Empty : Boolean := True;
 Elements : List;
 end record;
end Queue_Pack_Protected_Generic;

© 2015 Uwe R. Zimmer, The Australian National University page 97 of 700 (“Language refresher / introduction course” up to page 159)

A generic protected queue specifi cation

generic
 type Element is private;
 type Index is mod <>; -- Modulo defines size of the queue.

package Queue_Pack_Protected_Generic is

 type Queue_Type is limited private;

 protected type Protected_Queue is
 entry Enqueue (Item : Element);
 entry Dequeue (Item : out Element);
 procedure Empty_Queue;
 function Is_Empty return Boolean;
 function Is_Full return Boolean;
 private
 Queue : Queue_Type;
 end Protected_Queue;

private
 type List is array (Index) of Element;
 type Queue_Type is record
 Top, Free : Index := Index’First;
 Is_Empty : Boolean := True;
 Elements : List;
 end record;
end Queue_Pack_Protected_Generic;

Generic components of the package:

Element can be anything
while the Index need to

be a modulo type.

© 2015 Uwe R. Zimmer, The Australian National University page 98 of 700 (“Language refresher / introduction course” up to page 159)

A generic protected queue specifi cation

generic
 type Element is private;
 type Index is mod <>; -- Modulo defines size of the queue.

package Queue_Pack_Protected_Generic is

 type Queue_Type is limited private;

 protected type Protected_Queue is
 entry Enqueue (Item : Element);
 entry Dequeue (Item : out Element);
 procedure Empty_Queue;
 function Is_Empty return Boolean;
 function Is_Full return Boolean;
 private
 Queue : Queue_Type;
 end Protected_Queue;

private
 type List is array (Index) of Element;
 type Queue_Type is record
 Top, Free : Index := Index’First;
 Is_Empty : Boolean := True;
 Elements : List;
 end record;
end Queue_Pack_Protected_Generic;

Queue is protected for safe
concurrent access.

Three categories of a access routines

are distinguished by the keywords:

entry, procedure, function

© 2015 Uwe R. Zimmer, The Australian National University page 99 of 700 (“Language refresher / introduction course” up to page 159)

A generic protected queue specifi cation

generic
 type Element is private;
 type Index is mod <>; -- Modulo defines size of the queue.

package Queue_Pack_Protected_Generic is

 type Queue_Type is limited private;

 protected type Protected_Queue is
 entry Enqueue (Item : Element);
 entry Dequeue (Item : out Element);
 procedure Empty_Queue;
 function Is_Empty return Boolean;
 function Is_Full return Boolean;
 private
 Queue : Queue_Type;
 end Protected_Queue;

private
 type List is array (Index) of Element;
 type Queue_Type is record
 Top, Free : Index := Index’First;
 Is_Empty : Boolean := True;
 Elements : List;
 end record;
end Queue_Pack_Protected_Generic;

Rationale:

Procedures can modify
the protected data.

Hence they need a guarantee
for exclusive access.

Procedures are mutually exclusive
to all other access routines.

© 2015 Uwe R. Zimmer, The Australian National University page 100 of 700 (“Language refresher / introduction course” up to page 159)

A generic protected queue specifi cation

generic
 type Element is private;
 type Index is mod <>; -- Modulo defines size of the queue.

package Queue_Pack_Protected_Generic is

 type Queue_Type is limited private;

 protected type Protected_Queue is
 entry Enqueue (Item : Element);
 entry Dequeue (Item : out Element);
 procedure Empty_Queue;
 function Is_Empty return Boolean;
 function Is_Full return Boolean;
 private
 Queue : Queue_Type;
 end Protected_Queue;

private
 type List is array (Index) of Element;
 type Queue_Type is record
 Top, Free : Index := Index’First;
 Is_Empty : Boolean := True;
 Elements : List;
 end record;
end Queue_Pack_Protected_Generic;

Rationale:

The compiler enforces those
functions to be side-effect-free with

respect to the protected data.

Hence concurrent access can be

granted among functions without risk.

Functions are mutually exclusive
to procedures and entries, yet
concurrent to other functions.

© 2015 Uwe R. Zimmer, The Australian National University page 101 of 700 (“Language refresher / introduction course” up to page 159)

A generic protected queue specifi cation

generic
 type Element is private;
 type Index is mod <>; -- Modulo defines size of the queue.

package Queue_Pack_Protected_Generic is

 type Queue_Type is limited private;

 protected type Protected_Queue is
 entry Enqueue (Item : Element);
 entry Dequeue (Item : out Element);
 procedure Empty_Queue;
 function Is_Empty return Boolean;
 function Is_Full return Boolean;
 private
 Queue : Queue_Type;
 end Protected_Queue;

private
 type List is array (Index) of Element;
 type Queue_Type is record
 Top, Free : Index := Index’First;
 Is_Empty : Boolean := True;
 Elements : List;
 end record;
end Queue_Pack_Protected_Generic;

Rationale:

Entries can be blocking even if the

protected object itself is unlocked.

Hence a separate task waiting
queue is provided per entry.

Entries are mutually exclusive to all other

access routines and also provide one

guard per entry which need to evaluate

to True before entry is granted.

The guard expressions are defi ned
in the implementation part.

© 2015 Uwe R. Zimmer, The Australian National University page 102 of 700 (“Language refresher / introduction course” up to page 159)

A generic protected queue specifi cation

generic
 type Element is private;
 type Index is mod <>; -- Modulo defines size of the queue.

package Queue_Pack_Protected_Generic is

 type Queue_Type is limited private;

 protected type Protected_Queue is
 entry Enqueue (Item : Element);
 entry Dequeue (Item : out Element);
 procedure Empty_Queue;
 function Is_Empty return Boolean;
 function Is_Full return Boolean;
 private
 Queue : Queue_Type;
 end Protected_Queue;

private
 type List is array (Index) of Element;
 type Queue_Type is record
 Top, Free : Index := Index’First;
 Is_Empty : Boolean := True;
 Elements : List;
 end record;
end Queue_Pack_Protected_Generic;

… anything on this slide
still not perfectly clear?

© 2015 Uwe R. Zimmer, The Australian National University page 103 of 700 (“Language refresher / introduction course” up to page 159)

A generic protected queue implementation

package body Queue_Pack_Protected_Generic is

 protected body Protected_Queue is

 entry Enqueue (Item : Element) when not Is_Full is
 begin
 Queue.Elements (Queue.Free) := Item; Queue.Free := Index’Succ (Queue.Free);
 Queue.Is_Empty := False;
 end Enqueue;

 entry Dequeue (Item : out Element) when not Is_Empty is
 begin
 Item := Queue.Elements (Queue.Top); Queue.Top := Index’Succ (Queue.Top);
 Queue.Is_Empty := Queue.Top = Queue.Free;
 end Dequeue;

 procedure Empty_Queue is
 begin
 Queue.Top := Index’First; Queue.Free := Index’First; Queue.Is_Empty := True;
 end Empty_Queue;

 function Is_Empty return Boolean is (Queue.Is_Empty);
 function Is_Full return Boolean is
 (not Queue.Is_Empty and then Queue.Top = Queue.Free);

 end Protected_Queue;
end Queue_Pack_Protected_Generic;

© 2015 Uwe R. Zimmer, The Australian National University page 104 of 700 (“Language refresher / introduction course” up to page 159)

A generic protected queue implementation

package body Queue_Pack_Protected_Generic is

 protected body Protected_Queue is

 entry Enqueue (Item : Element) when not Is_Full is
 begin
 Queue.Elements (Queue.Free) := Item; Queue.Free := Index’Succ (Queue.Free);
 Queue.Is_Empty := False;
 end Enqueue;

 entry Dequeue (Item : out Element) when not Is_Empty is
 begin
 Item := Queue.Elements (Queue.Top); Queue.Top := Index’Succ (Queue.Top);
 Queue.Is_Empty := Queue.Top = Queue.Free;
 end Dequeue;

 procedure Empty_Queue is
 begin
 Queue.Top := Index’First; Queue.Free := Index’First; Queue.Is_Empty := True;
 end Empty_Queue;

 function Is_Empty return Boolean is (Queue.Is_Empty);
 function Is_Full return Boolean is
 (not Queue.Is_Empty and then Queue.Top = Queue.Free);

 end Protected_Queue;
end Queue_Pack_Protected_Generic;

e.Top
= Que

eue.Free) :
False;

out Elemen

ent
Que
ts (Queue
eue Top =

(Qu
e

niversi y page 104 of y 700 (“Language refresher / introductio0

Emp

d

ree := Index First

niversi y page 104 of y 700 (“Language refresher / introduc0

E

m

d

ree := Index First;

niversity page 104 of y 700 (“Language refresher / introduc0

ree := Index First; Queue.Is_E

return Boolean is (Queue.Is_Empty);
return Boolean is

mpty and then Queue.Top = Queue.Free);

d_Generic;

niversity page 104 of y 700 (“Language refresher / introduc0

ree := Index First; Queue.Is_E

m

d

Tasks are automatically blocked or released

depending on the state of the guard.

Guard expressions are re-evaluated on exiting an

entry or procedure
(no point to re-check them at any other time).

Exactly one waiting task on one entry is released.

eu

 Queue.Top := Index’First; Queue.Fr
eeeeeeeeeennnnnnnnnndddddddddddddd Empty Queue;

e

Frt; Queue.FFFFFFFrr

T k t a

FrFr

Queue.Is Empty := QQueeu Queue.Is_Empty := Que
end Dequeue;

procedure Empty_Queue is
begin
 Queue.Top := Index’First; Queue.F

eue.Top = QuQueeue.Top =

ndex First; Queue.Fndex First; Queue.Fndex First; Queue.Fndex First; Queue.F

Guard expressions
follow after when in the

implementation of entries.

© 2015 Uwe R. Zimmer, The Australian National University page 105 of 700 (“Language refresher / introduction course” up to page 159)

A generic protected queue implementation

package body Queue_Pack_Protected_Generic is

 protected body Protected_Queue is

 entry Enqueue (Item : Element) when not Is_Full is
 begin
 Queue.Elements (Queue.Free) := Item; Queue.Free := Index’Succ (Queue.Free);
 Queue.Is_Empty := False;
 end Enqueue;

 entry Dequeue (Item : out Element) when not Is_Empty is
 begin
 Item := Queue.Elements (Queue.Top); Queue.Top := Index’Succ (Queue.Top);
 Queue.Is_Empty := Queue.Top = Queue.Free;
 end Dequeue;

 procedure Empty_Queue is
 begin
 Queue.Top := Index’First; Queue.Free := Index’First; Queue.Is_Empty := True;
 end Empty_Queue;

 function Is_Empty return Boolean is (Queue.Is_Empty);
 function Is_Full return Boolean is
 (not Queue.Is_Empty and then Queue.Top = Queue.Free);

 end Protected_Queue;
end Queue_Pack_Protected_Generic;

… anything on this slide
still not perfectly clear?

© 2015 Uwe R. Zimmer, The Australian National University page 106 of 700 (“Language refresher / introduction course” up to page 159)

A generic protected queue test program

with Ada.Task_Identification; use Ada.Task_Identification;
with Ada.Text_IO; use Ada.Text_IO;
with Queue_Pack_Protected_Generic;

procedure Queue_Test_Protected_Generic is

 type Queue_Size is mod 3;

 package Queue_Pack_Protected_Character is
 new Queue_Pack_Protected_Generic (Element => Character, Index => Queue_Size);
 use Queue_Pack_Protected_Character;

 Queue : Protected_Queue;

 type Task_Index is range 1 .. 3;

 task type Producer;
 task type Consumer;

 Producers : array (Task_Index) of Producer;
 Consumers : array (Task_Index) of Consumer;

(…)

begin
 null;
end Queue_Test_Protected_Generic;

© 2015 Uwe R. Zimmer, The Australian National University page 107 of 700 (“Language refresher / introduction course” up to page 159)

A generic protected queue test program

with Ada.Task_Identification; use Ada.Task_Identification;
with Ada.Text_IO; use Ada.Text_IO;
with Queue_Pack_Protected_Generic;

procedure Queue_Test_Protected_Generic is

 type Queue_Size is mod 3;

 package Queue_Pack_Protected_Character is
 new Queue_Pack_Protected_Generic (Element => Character, Index => Queue_Size);
 use Queue_Pack_Protected_Character;

 Queue : Protected_Queue;

 type Task_Index is range 1 .. 3;

 task type Producer;
 task type Consumer;

 Producers : array (Task_Index) of Producer;
 Consumers : array (Task_Index) of Consumer;

(…)

begin
 null;
end Queue_Test_Protected_Generic;

If more than one instance of a specifi c

task is to be run then a task type (as

opposed to a concrete task) is declared.

© 2015 Uwe R. Zimmer, The Australian National University page 108 of 700 (“Language refresher / introduction course” up to page 159)

A generic protected queue test program

with Ada.Task_Identification; use Ada.Task_Identification;
with Ada.Text_IO; use Ada.Text_IO;
with Queue_Pack_Protected_Generic;

procedure Queue_Test_Protected_Generic is

 type Queue_Size is mod 3;

 package Queue_Pack_Protected_Character is
 new Queue_Pack_Protected_Generic (Element => Character, Index => Queue_Size);
 use Queue_Pack_Protected_Character;

 Queue : Protected_Queue;

 type Task_Index is range 1 .. 3;

 task type Producer;
 task type Consumer;

 Producers : array (Task_Index) of Producer;
 Consumers : array (Task_Index) of Consumer;

(…)

begin
 null;
end Queue_Test_Protected_Generic;

Tasks are started right when such an array is created.

Multiple instances of a task can
be instantiated e.g. by declaring

an array of this task type.

© 2015 Uwe R. Zimmer, The Australian National University page 109 of 700 (“Language refresher / introduction course” up to page 159)

These declarations spawned
off all the production code.

A generic protected queue test program

with Ada.Task_Identification; use Ada.Task_Identification;
with Ada.Text_IO; use Ada.Text_IO;
with Queue_Pack_Protected_Generic;

procedure Queue_Test_Protected_Generic is

 type Queue_Size is mod 3;

 package Queue_Pack_Protected_Character is
 new Queue_Pack_Protected_Generic (Element => Character, Index => Queue_Size);
 use Queue_Pack_Protected_Character;

 Queue : Protected_Queue;

 type Task_Index is range 1 .. 3;

 task type Producer;
 task type Consumer;

 Producers : array (Task_Index) of Producer;
 Consumers : array (Task_Index) of Consumer;

(…)

begin
 null;
end Queue_Test_Protected_Generic;

Often there are no statements for the “main task”

(here explicitly stated by a null statement).

page 109 of 700 (“Language refresher / introduction course” up to page 150page 109 of 700 (“Language refresher / introduction course” up to page0page 109 of 700 (“Language refresher / introduction course” up to page0page 109 of 700 (“Language refresher / introduction course” up to page0

This task is prevented from terminating though

until all tasks inside its scope terminated.

© 2015 Uwe R. Zimmer, The Australian National University page 110 of 700 (“Language refresher / introduction course” up to page 159)

A generic protected queue test program

with Ada.Task_Identification; use Ada.Task_Identification;
with Ada.Text_IO; use Ada.Text_IO;
with Queue_Pack_Protected_Generic;

procedure Queue_Test_Protected_Generic is

 type Queue_Size is mod 3;

 package Queue_Pack_Protected_Character is
 new Queue_Pack_Protected_Generic (Element => Character, Index => Queue_Size);
 use Queue_Pack_Protected_Character;

 Queue : Protected_Queue;

 type Task_Index is range 1 .. 3;

 task type Producer;
 task type Consumer;

 Producers : array (Task_Index) of Producer;
 Consumers : array (Task_Index) of Consumer;

(…)

begin
 null;
end Queue_Test_Protected_Generic; … anything on this slide

still not perfectly clear?

© 2015 Uwe R. Zimmer, The Australian National University page 111 of 700 (“Language refresher / introduction course” up to page 159)

A generic protected queue test program (cont.)

 subtype Some_Characters is Character range ‘a’ .. ‘f’;

 task body Producer is

 begin
 for Ch in Some_Characters loop
 Put_Line (“Task “ & Image (Current_Task) & “ finds the queue to be “ &
 (if Queue.Is_Empty then “EMPTY” else “not empty”) &
 “ and “ &
 (if Queue.Is_Full then “FULL” else “not full”) &
 “ and prepares to add: “ & Character’Image (Ch) &
 “ to the queue.”);

 Queue.Enqueue (Ch); -- task might be blocked here!

 end loop;
 Put_Line (“<---- Task “ & Image (Current_Task) & “ terminates.”);
 end Producer;

© 2015 Uwe R. Zimmer, The Australian National University page 112 of 700 (“Language refresher / introduction course” up to page 159)

A generic protected queue test program (cont.)

 subtype Some_Characters is Character range ‘a’ .. ‘f’;

 task body Producer is

 begin
 for Ch in Some_Characters loop
 Put_Line (“Task “ & Image (Current_Task) & “ finds the queue to be “ &
 (if Queue.Is_Empty then “EMPTY” else “not empty”) &
 “ and “ &
 (if Queue.Is_Full then “FULL” else “not full”) &
 “ and prepares to add: “ & Character’Image (Ch) &
 “ to the queue.”);

 Queue.Enqueue (Ch); -- task might be blocked here!

 end loop;
 Put_Line (“<---- Task “ & Image (Current_Task) & “ terminates.”);
 end Producer;

g ;

The executable code for a task is provided in its body.

© 2015 Uwe R. Zimmer, The Australian National University page 113 of 700 (“Language refresher / introduction course” up to page 159)

A generic protected queue test program (cont.)

 subtype Some_Characters is Character range ‘a’ .. ‘f’;

 task body Producer is

 begin
 for Ch in Some_Characters loop
 Put_Line (“Task “ & Image (Current_Task) & “ finds the queue to be “ &
 (if Queue.Is_Empty then “EMPTY” else “not empty”) &
 “ and “ &
 (if Queue.Is_Full then “FULL” else “not full”) &
 “ and prepares to add: “ & Character’Image (Ch) &
 “ to the queue.”);

 Queue.Enqueue (Ch); -- task might be blocked here!

 end loop;
 Put_Line (“<---- Task “ & Image (Current_Task) & “ terminates.”);
 end Producer;

113 f 00 (“L f h / i d i ” 159)0

There are three of those tasks
and they are all ‘hammering’
the queue at full CPU speed.

g

“ & Image (Current_Task)

© 2015 Uwe R. Zimmer, The Australian National University page 114 of 700 (“Language refresher / introduction course” up to page 159)

A generic protected queue test program (cont.)

 subtype Some_Characters is Character range ‘a’ .. ‘f’;

 task body Producer is

 begin
 for Ch in Some_Characters loop
 Put_Line (“Task “ & Image (Current_Task) & “ finds the queue to be “ &
 (if Queue.Is_Empty then “EMPTY” else “not empty”) &
 “ and “ &
 (if Queue.Is_Full then “FULL” else “not full”) &
 “ and prepares to add: “ & Character’Image (Ch) &
 “ to the queue.”);

 Queue.Enqueue (Ch); -- task might be blocked here!

 end loop;
 Put_Line (“<---- Task “ & Image (Current_Task) & “ terminates.”);
 end Producer;

Tasks automatically terminate once they reach their end declaration

(and once all inner tasks are terminated).

© 2015 Uwe R. Zimmer, The Australian National University page 115 of 700 (“Language refresher / introduction course” up to page 159)

A generic protected queue test program (cont.)

 subtype Some_Characters is Character range ‘a’ .. ‘f’;

 task body Producer is

 begin
 for Ch in Some_Characters loop
 Put_Line (“Task “ & Image (Current_Task) & “ finds the queue to be “ &
 (if Queue.Is_Empty then “EMPTY” else “not empty”) &
 “ and “ &
 (if Queue.Is_Full then “FULL” else “not full”) &
 “ and prepares to add: “ & Character’Image (Ch) &
 “ to the queue.”);

 Queue.Enqueue (Ch); -- task might be blocked here!

 end loop;
 Put_Line (“<---- Task “ & Image (Current_Task) & “ terminates.”);
 end Producer;

… anything on this slide
still not perfectly clear?

© 2015 Uwe R. Zimmer, The Australian National University page 116 of 700 (“Language refresher / introduction course” up to page 159)

A generic protected queue test program (cont.)

 task body Consumer is

 Item : Character;
 Counter : Natural := 0;

 begin
 loop

 Queue.Dequeue (Item); -- task might be blocked here!

 Counter := Natural’Succ (Counter);
 Put_Line (“Task “ & Image (Current_Task) &
 “ received: “ & Character’Image (Item) &
 “ and the queue appears to be “ &
 (if Queue.Is_Empty then “EMPTY” else “not empty”) &
 “ and “ &
 (if Queue.Is_Full then “FULL” else “not full”) &
 “ afterwards.”);
 exit when Item = Some_Characters’Last;
 end loop;
 Put_Line (“<---- Task “ & Image (Current_Task) &
 “ terminates and received“ & Natural’Image (Counter) & “ items.”);
 end Consumer;

© 2015 Uwe R. Zimmer, The Australian National University page 117 of 700 (“Language refresher / introduction course” up to page 159)

A generic protected queue test program (cont.)

 task body Consumer is

 Item : Character;
 Counter : Natural := 0;

 begin
 loop

 Queue.Dequeue (Item); -- task might be blocked here!

 Counter := Natural’Succ (Counter);
 Put_Line (“Task “ & Image (Current_Task) &
 “ received: “ & Character’Image (Item) &
 “ and the queue appears to be “ &
 (if Queue.Is_Empty then “EMPTY” else “not empty”) &
 “ and “ &
 (if Queue.Is_Full then “FULL” else “not full”) &
 “ afterwards.”);
 exit when Item = Some_Characters’Last;
 end loop;
 Put_Line (“<---- Task “ & Image (Current_Task) &
 “ terminates and received“ & Natural’Image (Counter) & “ items.”);
 end Consumer;

Another three tasks and are all
‘hammering’ the queue at this

end and at full CPU speed.

-- task might be

© 2015 Uwe R. Zimmer, The Australian National University page 118 of 700 (“Language refresher / introduction course” up to page 159)

A generic protected queue test program (cont.)

 task body Consumer is

 Item : Character;
 Counter : Natural := 0;

 begin
 loop

 Queue.Dequeue (Item); -- task might be blocked here!

 Counter := Natural’Succ (Counter);
 Put_Line (“Task “ & Image (Current_Task) &
 “ received: “ & Character’Image (Item) &
 “ and the queue appears to be “ &
 (if Queue.Is_Empty then “EMPTY” else “not empty”) &
 “ and “ &
 (if Queue.Is_Full then “FULL” else “not full”) &
 “ afterwards.”);
 exit when Item = Some_Characters’Last;
 end loop;
 Put_Line (“<---- Task “ & Image (Current_Task) &
 “ terminates and received“ & Natural’Image (Counter) & “ items.”);
 end Consumer;

age refresher / introduction course up to page 159)age refresher / introduction course” up to page 159)

… anything on this slide
still not perfectly clear?

© 2015 Uwe R. Zimmer, The Australian National University page 119 of 700 (“Language refresher / introduction course” up to page 159)

A generic protected queue test program (output)

Task producers(1) finds the queue to be EMPTY and not full and prepares to add: ‘a’ to the queue.
Task producers(1) finds the queue to be not empty and not full and prepares to add: ‘b’ to the queue.
Task producers(1) finds the queue to be not empty and not full and prepares to add: ‘c’ to the queue.
Task producers(1) finds the queue to be not empty and FULL and prepares to add: ‘d’ to the queue.
Task producers(2) finds the queue to be not empty and FULL and prepares to add: ‘a’ to the queue.
Task producers(3) finds the queue to be not empty and FULL and prepares to add: ‘a’ to the queue.
Task consumers(1) received: ‘a’ and the queue appears to be not empty and FULL afterwards.
Task consumers(1) received: ‘b’ and the queue appears to be not empty and FULL afterwards.
Task consumers(1) received: ‘c’ and the queue appears to be not empty and FULL afterwards.
Task consumers(1) received: ‘d’ and the queue appears to be not empty and not full afterwards.
Task consumers(1) received: ‘a’ and the queue appears to be not empty and not full afterwards.
..
<---- Task producers(1) terminates.
..
Task consumers(3) received: ‘b’ and the queue appears to be EMPTY and not full afterwards.
<---- Task consumers(2) terminates and received 1 items.
..
<---- Task producers(2) terminates.
..
<---- Task producers(3) terminates.
..
<---- Task consumers(1) terminates and received 12 items.
<---- Task consumers(3) terminates and received 5 items. What is going on here?

© 2015 Uwe R. Zimmer, The Australian National University page 120 of 700 (“Language refresher / introduction course” up to page 159)

A generic protected queue test program (another output)

Task producers(1) finds the queue to be EMPTY and not full and prepares to add: ‘a’ to the queue.
Task producers(2) finds the queue to be EMPTY and not full and prepares to add: ‘a’ to the queue.
Task producers(1) finds the queue to be not empty and not full and prepares to add: ‘b’ to the queue.
Task consumers(1) received: ‘a’ and the queue appears to be EMPTY and not full afterwards.
Task producers(3) finds the queue to be EMPTY and not full and prepares to add: ‘a’ to the queue.
Task producers(1) finds the queue to be EMPTY and not full and prepares to add: ‘c’ to the queue.
Task producers(2) finds the queue to be EMPTY and not full and prepares to add: ‘b’ to the queue.
Task consumers(2) received: ‘a’ and the queue appears to be EMPTY and not full afterwards.
Task consumers(3) received: ‘b’ and the queue appears to be EMPTY and not full afterwards.
..
<---- Task producers(1) terminates.
Task producers(2) finds the queue to be not empty and FULL and prepares to add: ‘f’ to the queue.
Task consumers(2) received: ‘f’ and the queue appears to be not empty and not full afterwards.
Task consumers(3) received: ‘e’ and the queue appears to be EMPTY and not full afterwards.
Task producers(3) finds the queue to be not empty and not full and prepares to add: ‘f’ to the queue.
Task consumers(1) received: ‘d’ and the queue appears to be not empty and not full afterwards.
<---- Task producers(2) terminates.
<---- Task consumers(2) terminates and received 5 items.
Task consumers(3) received: ‘e’ and the queue appears to be not empty and not full afterwards.
<---- Task producers(3) terminates.
Task consumers(1) received: ‘f’ and the queue appears to be not empty and not full afterwards.
Task consumers(3) received: ‘f’ and the queue appears to be EMPTY and not full afterwards.
<---- Task consumers(1) terminates and received 6 items.
<---- Task consumers(3) terminates and received 7 items. Does this make any sense?

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 121 of 700 (“Language refresher / introduction course” up to page 159)

Ada

Abstract types & dispatching
… introducing:

• Abstract tagged types & subroutines (Interfaces)

• Concrete implementation of abstract types

• Dynamic dispatching to different packages,
tasks, protected types or partitions.

• Synchronous message passing.

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 122 of 700 (“Language refresher / introduction course” up to page 159)

Ada

Abstract types & dispatching
… introducing:

• Abstract tagged types & subroutines (Interfaces)

• Concrete implementation of abstract types

• Dynamic dispatching to different packages,
tasks, protected types or partitions.

• Synchronous message passing.

Zi Th A t li N ti l U i it 122 f 700 (“L f h / i t d ti ”0

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 123 of 700 (“Language refresher / introduction course” up to page 159)

An abstract queue specifi cation

generic

 type Element is private;

package Queue_Pack_Abstract is

 type Queue_Interface is synchronized interface;

 procedure Enqueue (Q : in out Queue_Interface; Item : Element) is abstract;
 procedure Dequeue (Q : in out Queue_Interface; Item : out Element) is abstract;

end Queue_Pack_Abstract;

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 124 of 700 (“Language refresher / introduction course” up to page 159)

An abstract queue specifi cation

generic

 type Element is private;

package Queue_Pack_Abstract is

 type Queue_Interface is synchronized interface;

 procedure Enqueue (Q : in out Queue_Interface; Item : Element) is abstract;
 procedure Dequeue (Q : in out Queue_Interface; Item : out Element) is abstract;

end Queue_Pack_Abstract;

Motivation:

Different, derived implementations

(potentially on different computers)

can be passed around and referred to with the

same common interface as defi ned here.

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 125 of 700 (“Language refresher / introduction course” up to page 159)

synchronized means that this interface can

only be implemented by synchronized entities

like protected objects (as seen above)

or synchronous message passing.

An abstract queue specifi cation

generic

 type Element is private;

package Queue_Pack_Abstract is

 type Queue_Interface is synchronized interface;

 procedure Enqueue (Q : in out Queue_Interface; Item : Element) is abstract;
 procedure Dequeue (Q : in out Queue_Interface; Item : out Element) is abstract;

end Queue_Pack_Abstract;

Abstract, empty type
defi nition which serves to
defi ne interface templates.

chroon

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 126 of 700 (“Language refresher / introduction course” up to page 159)

An abstract queue specifi cation

generic

 type Element is private;

package Queue_Pack_Abstract is

 type Queue_Interface is synchronized interface;

 procedure Enqueue (Q : in out Queue_Interface; Item : Element) is abstract;
 procedure Dequeue (Q : in out Queue_Interface; Item : out Element) is abstract;

end Queue_Pack_Abstract;

Abstract methods need to be
overridden with concrete methods

when a new type is derived from it.

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 127 of 700 (“Language refresher / introduction course” up to page 159)

An abstract queue specifi cation

generic

 type Element is private;

package Queue_Pack_Abstract is

 type Queue_Interface is synchronized interface;

 procedure Enqueue (Q : in out Queue_Interface; Item : Element) is abstract;
 procedure Dequeue (Q : in out Queue_Interface; Item : out Element) is abstract;

end Queue_Pack_Abstract;

… this does not require an implementation package (as all procedures are abstract)

… anything on this slide
still not perfectly clear?

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 128 of 700 (“Language refresher / introduction course” up to page 159)

A concrete queue specifi cation

with Queue_Pack_Abstract;
generic
 with package Queue_Instance is new Queue_Pack_Abstract (<>);
 type Index is mod <>; -- Modulo defines size of the queue.

package Queue_Pack_Concrete is
 use Queue_Instance;
 type Queue_Type is limited private;

 protected type Protected_Queue is new Queue_Interface with
 overriding entry Enqueue (Item : Element);
 overriding entry Dequeue (Item : out Element);
 procedure Empty_Queue;
 function Is_Empty return Boolean;
 function Is_Full return Boolean;
 private
 Queue : Queue_Type;
 end Protected_Queue;
private
 (...) -- as all previous private queue declarations
end Queue_Pack_Concrete;

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 129 of 700 (“Language refresher / introduction course” up to page 159)

A concrete queue specifi cation

with Queue_Pack_Abstract;
generic
 with package Queue_Instance is new Queue_Pack_Abstract (<>);
 type Index is mod <>; -- Modulo defines size of the queue.

package Queue_Pack_Concrete is
 use Queue_Instance;
 type Queue_Type is limited private;

 protected type Protected_Queue is new Queue_Interface with
 overriding entry Enqueue (Item : Element);
 overriding entry Dequeue (Item : out Element);
 procedure Empty_Queue;
 function Is_Empty return Boolean;
 function Is_Full return Boolean;
 private
 Queue : Queue_Type;
 end Protected_Queue;
private
 (...) -- as all previous private queue declarations
end Queue_Pack_Concrete;

A generic package
which takes another

generic package
as a parameter.

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 130 of 700 (“Language refresher / introduction course” up to page 159)

A concrete queue specifi cation

with Queue_Pack_Abstract;
generic
 with package Queue_Instance is new Queue_Pack_Abstract (<>);
 type Index is mod <>; -- Modulo defines size of the queue.

package Queue_Pack_Concrete is
 use Queue_Instance;
 type Queue_Type is limited private;

 protected type Protected_Queue is new Queue_Interface with
 overriding entry Enqueue (Item : Element);
 overriding entry Dequeue (Item : out Element);
 procedure Empty_Queue;
 function Is_Empty return Boolean;
 function Is_Full return Boolean;
 private
 Queue : Queue_Type;
 end Protected_Queue;
private
 (...) -- as all previous private queue declarations
end Queue_Pack_Concrete;

A synchronous
implementation of
the abstract type
Queue_Interface

All abstract methods
are overridden
with concrete

implementations.

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 131 of 700 (“Language refresher / introduction course” up to page 159)

A concrete queue specifi cation

with Queue_Pack_Abstract;
generic
 with package Queue_Instance is new Queue_Pack_Abstract (<>);
 type Index is mod <>; -- Modulo defines size of the queue.

package Queue_Pack_Concrete is
 use Queue_Instance;
 type Queue_Type is limited private;

 protected type Protected_Queue is new Queue_Interface with
 overriding entry Enqueue (Item : Element);
 overriding entry Dequeue (Item : out Element);
 procedure Empty_Queue;
 function Is_Empty return Boolean;
 function Is_Full return Boolean;
 private
 Queue : Queue_Type;
 end Protected_Queue;
private
 (...) -- as all previous private queue declarations
end Queue_Pack_Concrete;

Other (non-overriding)
methods can be added.

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 132 of 700 (“Language refresher / introduction course” up to page 159)

A concrete queue specifi cation

with Queue_Pack_Abstract;
generic
 with package Queue_Instance is new Queue_Pack_Abstract (<>);
 type Index is mod <>; -- Modulo defines size of the queue.

package Queue_Pack_Concrete is
 use Queue_Instance;
 type Queue_Type is limited private;

 protected type Protected_Queue is new Queue_Interface with
 overriding entry Enqueue (Item : Element);
 overriding entry Dequeue (Item : out Element);
 procedure Empty_Queue;
 function Is_Empty return Boolean;
 function Is_Full return Boolean;
 private
 Queue : Queue_Type;
 end Protected_Queue;
private
 (...) -- as all previous private queue declarations
end Queue_Pack_Concrete;

… anything on this slide
still not perfectly clear?

© 2015 Uwe R. Zimmer, The Australian National University page 133 of 700 (“Language refresher / introduction course” up to page 159)

A concrete queue implementation

package body Queue_Pack_Concrete is

 protected body Protected_Queue is

 entry Enqueue (Item : Element) when not Is_Full is
 begin
 Queue.Elements (Queue.Free) := Item; Queue.Free := Index’Succ (Queue.Free);
 Queue.Is_Empty := False;
 end Enqueue;

 entry Dequeue (Item : out Element) when not Is_Empty is
 begin
 Item := Queue.Elements (Queue.Top); Queue.Top := Index’Succ (Queue.Top);
 Queue.Is_Empty := Queue.Top = Queue.Free;
 end Dequeue;

 procedure Empty_Queue is
 begin
 Queue.Top := Index’First; Queue.Free := Index’First; Queue.Is_Empty := True;
 end Empty_Queue;

 function Is_Empty return Boolean is (Queue.Is_Empty);
 function Is_Full return Boolean is
 (not Queue.Is_Empty and then Queue.Top = Queue.Free);

 end Protected_Queue;
end Queue_Pack_Concrete;

body Protected_Queue is

Enqueue (Item : Element) when not Is_Full is

ue.Elements (Queue.Free) := Item; Queue.Free := Index’Succ
ue.Is_Empty := False;
queue;

Dequeue (Item : out Element) when nnnoooooooooooottttt Is_Empty iiiiiiiiiiisssssssssssssss

m := Queue.Elements (Queue.Top); Queue.Top := Index’Succ (Q
ue.Is_Empty := Queue.Top = Queue.Free;
queue;

ure Empty_Queue isss

ue.Top := Index’First; Queue.Free := Index’First; Queue.Is_
pty_Queue;

on Is_Empty return Boolean is (Queue.Is_Empty);

Que

Index

on Is Full return Boolean is

uurrrrrreeeeeeeeeeeee

Tooooooppppp
uuueeeeeeu

_______EEEEEEEEEEEEEEmmp

FFFFFF

uuu

ttyyy

xxxx

e

ttttttyyyyyyyyyyyyy

___QQQQQQQQQQQQQuuuuuuuuuuuuuueeeeeeeeeeuuue

=== I xxxxxxxxxxxxx’’’’’’FFFFFFFiiiiii

iiiiiiisssssss

uuueeeuuuuuuuuuuuuuuueeeeeeeeeeeeee.TTTo
TTTTTTTTTTTTToooooooooooooopppppp = Quuuuuueeeeu

Q

hhhhhhhhhhhhhhhhhhh nnnnnnnnnnn

; QQQ uuuuuuuu
FFFFFre

nnnnnnnnnnnnnnnnnnooooooootttttt

eeeeeeeeeeeee.To

s pttysssss______E ptttyyyyyyyyyyyyyy

============== IIIIn

i

xx’S

© 2015 Uwe R. Zimmer, The Australian National University page 134 of 700 (chapter 2: “Language refresher / introduction course” up to page 159)

A dispatching test program

with Ada.Text_IO; use Ada.Text_IO;
with Queue_Pack_Abstract;
with Queue_Pack_Concrete;

procedure Queue_Test_Dispatching is

 package Queue_Pack_Abstract_Character is
 new Queue_Pack_Abstract (Character);
 use Queue_Pack_Abstract_Character;

 type Queue_Size is mod 3;

 package Queue_Pack_Character is
 new Queue_Pack_Concrete (Queue_Pack_Abstract_Character, Queue_Size);
 use Queue_Pack_Character;

 type Queue_Class is access all Queue_Interface’class;

 task Queue_Holder; -- could be on an individual partition / separate computer
 task Queue_User is -- could be on an individual partition / separate computer
 entry Send_Queue (Remote_Queue : Queue_Class);
 end Queue_User;

(...)

begin
 null;
end Queue_Test_Dispatching;

© 2015 Uwe R. Zimmer, The Australian National University page 135 of 700 (chapter 2: “Language refresher / introduction course” up to page 159)

A dispatching test program

with Ada.Text_IO; use Ada.Text_IO;
with Queue_Pack_Abstract;
with Queue_Pack_Concrete;

procedure Queue_Test_Dispatching is

 package Queue_Pack_Abstract_Character is
 new Queue_Pack_Abstract (Character);
 use Queue_Pack_Abstract_Character;

 type Queue_Size is mod 3;

 package Queue_Pack_Character is
 new Queue_Pack_Concrete (Queue_Pack_Abstract_Character, Queue_Size);
 use Queue_Pack_Character;

 type Queue_Class is access all Queue_Interface’class;

 task Queue_Holder; -- could be on an individual partition / separate computer
 task Queue_User is -- could be on an individual partition / separate computer
 entry Send_Queue (Remote_Queue : Queue_Class);
 end Queue_User;

(...)

begin
 null;
end Queue_Test_Dispatching;

Sequence of instantiations

© 2015 Uwe R. Zimmer, The Australian National University page 136 of 700 (chapter 2: “Language refresher / introduction course” up to page 159)

A dispatching test program

with Ada.Text_IO; use Ada.Text_IO;
with Queue_Pack_Abstract;
with Queue_Pack_Concrete;

procedure Queue_Test_Dispatching is

 package Queue_Pack_Abstract_Character is
 new Queue_Pack_Abstract (Character);
 use Queue_Pack_Abstract_Character;

 type Queue_Size is mod 3;

 package Queue_Pack_Character is
 new Queue_Pack_Concrete (Queue_Pack_Abstract_Character, Queue_Size);
 use Queue_Pack_Character;

 type Queue_Class is access all Queue_Interface’class;

 task Queue_Holder; -- could be on an individual partition / separate computer
 task Queue_User is -- could be on an individual partition / separate computer
 entry Send_Queue (Remote_Queue : Queue_Class);
 end Queue_User;

(...)

begin
 null;
end Queue_Test_Dispatching;

Type which can refer to any
instance of Queue_Interface

is mod 3;

ck_Character is
k_Concrete (Queue_Pack_Abstract_Character, Queue_Size
haracter;

iiiiiiiiissssssss aaccess all Queue Interface’class;

© 2015 Uwe R. Zimmer, The Australian National University page 137 of 700 (chapter 2: “Language refresher / introduction course” up to page 159)

A dispatching test program

with Ada.Text_IO; use Ada.Text_IO;
with Queue_Pack_Abstract;
with Queue_Pack_Concrete;

procedure Queue_Test_Dispatching is

 package Queue_Pack_Abstract_Character is
 new Queue_Pack_Abstract (Character);
 use Queue_Pack_Abstract_Character;

 type Queue_Size is mod 3;

 package Queue_Pack_Character is
 new Queue_Pack_Concrete (Queue_Pack_Abstract_Character, Queue_Size);
 use Queue_Pack_Character;

 type Queue_Class is access all Queue_Interface’class;

 task Queue_Holder; -- could be on an individual partition / separate computer
 task Queue_User is -- could be on an individual partition / separate computer
 entry Send_Queue (Remote_Queue : Queue_Class);
 end Queue_User;

(...)

begin
 null;
end Queue_Test_Dispatching;

Declaring two concrete tasks.

(Queue_User has a synchronous message passing entry)

© 2015 Uwe R. Zimmer, The Australian National University page 138 of 700 (chapter 2: “Language refresher / introduction course” up to page 159)

A dispatching test program

with Ada.Text_IO; use Ada.Text_IO;
with Queue_Pack_Abstract;
with Queue_Pack_Concrete;

procedure Queue_Test_Dispatching is

 package Queue_Pack_Abstract_Character is
 new Queue_Pack_Abstract (Character);
 use Queue_Pack_Abstract_Character;

 type Queue_Size is mod 3;

 package Queue_Pack_Character is
 new Queue_Pack_Concrete (Queue_Pack_Abstract_Character, Queue_Size);
 use Queue_Pack_Character;

 type Queue_Class is access all Queue_Interface’class;

 task Queue_Holder; -- could be on an individual partition / separate computer
 task Queue_User is -- could be on an individual partition / separate computer
 entry Send_Queue (Remote_Queue : Queue_Class);
 end Queue_User;

(...)

begin
 null;
end Queue_Test_Dispatching;

… anything on this slide
still not perfectly clear?

© 2015 Uwe R. Zimmer, The Australian National University page 139 of 700 (“Language refresher / introduction course” up to page 159)

A dispatching test program (cont.)

 task body Queue_Holder is

 Local_Queue : constant Queue_Class := new Protected_Queue;
 Item : Character;

 begin
 Queue_User.Send_Queue (Local_Queue);

 Local_Queue.all.Dequeue (Item);

 Put_Line (“Local dequeue (Holder): “ & Character’Image (Item));
 end Queue_Holder;

 task body Queue_User is

 Local_Queue : constant Queue_Class := new Protected_Queue;
 Item : Character;

 begin
 accept Send_Queue (Remote_Queue : Queue_Class) do

 Remote_Queue.all.Enqueue (‘r’); -- potentially a remote procedure call!
 Local_Queue.all.Enqueue (‘l’);

 end Send_Queue;

 Local_Queue.all.Dequeue (Item);

 Put_Line (“Local dequeue (User) : “ & Character’Image (Item));
 end Queue_User;

© 2015 Uwe R. Zimmer, The Australian National University page 140 of 700 (“Language refresher / introduction course” up to page 159)

A dispatching test program (cont.)

 task body Queue_Holder is

 Local_Queue : constant Queue_Class := new Protected_Queue;
 Item : Character;

 begin
 Queue_User.Send_Queue (Local_Queue);

 Local_Queue.all.Dequeue (Item);

 Put_Line (“Local dequeue (Holder): “ & Character’Image (Item));
 end Queue_Holder;

 task body Queue_User is

 Local_Queue : constant Queue_Class := new Protected_Queue;
 Item : Character;

 begin
 accept Send_Queue (Remote_Queue : Queue_Class) do

 Remote_Queue.all.Enqueue (‘r’); -- potentially a remote procedure call!
 Local_Queue.all.Enqueue (‘l’);

 end Send_Queue;

 Local_Queue.all.Dequeue (Item);

 Put_Line (“Local dequeue (User) : “ & Character’Image (Item));
 end Queue_User;

Declaring local queues in each task.

© 2015 Uwe R. Zimmer, The Australian National University page 141 of 700 (“Language refresher / introduction course” up to page 159)

A dispatching test program (cont.)

 task body Queue_Holder is

 Local_Queue : constant Queue_Class := new Protected_Queue;
 Item : Character;

 begin
 Queue_User.Send_Queue (Local_Queue);

 Local_Queue.all.Dequeue (Item);

 Put_Line (“Local dequeue (Holder): “ & Character’Image (Item));
 end Queue_Holder;

 task body Queue_User is

 Local_Queue : constant Queue_Class := new Protected_Queue;
 Item : Character;

 begin
 accept Send_Queue (Remote_Queue : Queue_Class) do

 Remote_Queue.all.Enqueue (‘r’); -- potentially a remote procedure call!
 Local_Queue.all.Enqueue (‘l’);

 end Send_Queue;

 Local_Queue.all.Dequeue (Item);

 Put_Line (“Local dequeue (User) : “ & Character’Image (Item));
 end Queue_User;

Handing over the Holder’s queue

via synchronous message passing.

© 2015 Uwe R. Zimmer, The Australian National University page 142 of 700 (“Language refresher / introduction course” up to page 159)

A dispatching test program (cont.)

 task body Queue_Holder is

 Local_Queue : constant Queue_Class := new Protected_Queue;
 Item : Character;

 begin
 Queue_User.Send_Queue (Local_Queue);

 Local_Queue.all.Dequeue (Item);

 Put_Line (“Local dequeue (Holder): “ & Character’Image (Item));
 end Queue_Holder;

 task body Queue_User is

 Local_Queue : constant Queue_Class := new Protected_Queue;
 Item : Character;

 begin
 accept Send_Queue (Remote_Queue : Queue_Class) do

 Remote_Queue.all.Enqueue (‘r’); -- potentially a remote procedure call!
 Local_Queue.all.Enqueue (‘l’);

 end Send_Queue;

 Local_Queue.all.Dequeue (Item);

 Put_Line (“Local dequeue (User) : “ & Character’Image (Item));
 end Queue_User;

Adding to both queues

© 2015 Uwe R. Zimmer, The Australian National University page 143 of 700 (“Language refresher / introduction course” up to page 159)

A dispatching test program (cont.)

 task body Queue_Holder is

 Local_Queue : constant Queue_Class := new Protected_Queue;
 Item : Character;

 begin
 Queue_User.Send_Queue (Local_Queue);

 Local_Queue.all.Dequeue (Item);

 Put_Line (“Local dequeue (Holder): “ & Character’Image (Item));
 end Queue_Holder;

 task body Queue_User is

 Local_Queue : constant Queue_Class := new Protected_Queue;
 Item : Character;

 begin
 accept Send_Queue (Remote_Queue : Queue_Class) do

 Remote_Queue.all.Enqueue (‘r’); -- potentially a remote procedure call!
 Local_Queue.all.Enqueue (‘l’);

 end Send_Queue;

 Local_Queue.all.Dequeue (Item);

 Put_Line (“Local dequeue (User) : “ & Character’Image (Item));
 end Queue_User;

Tasks could run on
separate computers

ueue_Class) do

-- potentially a remote procedure call!-- potent

t

t

ter’Image (Item));

tected_Queue;

These two calls can be very
different in nature:

The fi rst call is potentially
tunneled through a network to
another computer and thus
uses a remote data structure.

The second call is always a local call
and using a local data-structure.

© 2015 Uwe R. Zimmer, The Australian National University page 144 of 700 (“Language refresher / introduction course” up to page 159)

A dispatching test program (cont.)

 task body Queue_Holder is

 Local_Queue : constant Queue_Class := new Protected_Queue;
 Item : Character;

 begin
 Queue_User.Send_Queue (Local_Queue);

 Local_Queue.all.Dequeue (Item);

 Put_Line (“Local dequeue (Holder): “ & Character’Image (Item));
 end Queue_Holder;

 task body Queue_User is

 Local_Queue : constant Queue_Class := new Protected_Queue;
 Item : Character;

 begin
 accept Send_Queue (Remote_Queue : Queue_Class) do

 Remote_Queue.all.Enqueue (‘r’); -- potentially a remote procedure call!
 Local_Queue.all.Enqueue (‘l’);

 end Send_Queue;

 Local_Queue.all.Dequeue (Item);

 Put_Line (“Local dequeue (User) : “ & Character’Image (Item));
 end Queue_User;

Reading out ‘r’

Reading out ‘l’

© 2015 Uwe R. Zimmer, The Australian National University page 145 of 700 (“Language refresher / introduction course” up to page 159)

A dispatching test program (cont.)

 task body Queue_Holder is

 Local_Queue : constant Queue_Class := new Protected_Queue;
 Item : Character;

 begin
 Queue_User.Send_Queue (Local_Queue);

 Local_Queue.all.Dequeue (Item);

 Put_Line (“Local dequeue (Holder): “ & Character’Image (Item));
 end Queue_Holder;

 task body Queue_User is

 Local_Queue : constant Queue_Class := new Protected_Queue;
 Item : Character;

 begin
 accept Send_Queue (Remote_Queue : Queue_Class) do

 Remote_Queue.all.Enqueue (‘r’); -- potentially a remote procedure call!
 Local_Queue.all.Enqueue (‘l’);

 end Send_Queue;

 Local_Queue.all.Dequeue (Item);

 Put_Line (“Local dequeue (User) : “ & Character’Image (Item));
 end Queue_User;

… anything on this slide
still not perfectly clear?

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 146 of 700 (“Language refresher / introduction course” up to page 159)

Ada

Ada language status

Boeing 787 cockpit (press release photo)

• Established language standard with free and professionally
supported compilers available for all major OSs and platforms.

• Emphasis on maintainability, high-integrity and effi ciency.

• Stand-alone runtime environments for embedded systems.

• High integrity, real-time profi les part of the
standard e.g. Ravenscar profi le.

 Used in many large scale and/or high integrity projects

• Commonly used in aviation industry, high speed trains,
metro-systems, space programs and military programs.

• … also increasingly on small platforms / micro-controllers.

f h / i d i ” 159)

TGV, Renaud Chodkowski 2012

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 147 of 700 (chapter 2: “Language refresher / introduction course” up to page 159)

Chapel

Currently under development at Cray.
(originally for the DARPA High Productivity Computing Systems initiative.)

 Targeted at massively parallel computers

Language primitives for …

• Data parallelism:

 Distributed data storage with fi ne grained control (“domains”).

 Concurrent map operations (forall).

 Concurrent fold operations (scan, reduce).

• Task parallelism:

 concurrent loops and blocks (cobegin, coforall).

• Synchronization:

 Task synchronization, synchronized variables, atomic sections.

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 148 of 700 (“Language refresher / introduction course” up to page 159)

A data-parallel stencil program

config const n = 100,
 max_iterations = 50,
 epsilon = 1.0E-5,
 initial_border = 1.0;

const Matrix_w_Borders = {0 .. n + 1, 0 .. n + 1, 0 .. n + 1},
 Matrix = Matrix_w_Borders [1 .. n, 1 .. n, 1 .. n],
 Single_Border = Matrix.exterior (1, 0, 0);

var Field : [Matrix_w_Borders] real,
 Next_Field : [Matrix] real;

proc Stencil (M : [/* Matrix_w_Borders */] real, (i, j, k) : index (Matrix)) : real {

 return (M [i - 1, j, k]
 + M [i + 1, j, k]
 + M [i, j - 1, k]
 + M [i, j + 1, k]
 + M [i, j, k + 1]
 + M [i, j, k - 1]) / 6;
}

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 149 of 700 (“Language refresher / introduction course” up to page 159)

A data-parallel stencil program

config const n = 100,
 max_iterations = 50,
 epsilon = 1.0E-5,
 initial_border = 1.0;

const Matrix_w_Borders = {0 .. n + 1, 0 .. n + 1, 0 .. n + 1},
 Matrix = Matrix_w_Borders [1 .. n, 1 .. n, 1 .. n],
 Single_Border = Matrix.exterior (1, 0, 0);

var Field : [Matrix_w_Borders] real,
 Next_Field : [Matrix] real;

proc Stencil (M : [/* Matrix_w_Borders */] real, (i, j, k) : index (Matrix)) : real {

 return (M [i - 1, j, k]
 + M [i + 1, j, k]
 + M [i, j - 1, k]
 + M [i, j + 1, k]
 + M [i, j, k + 1]
 + M [i, j, k - 1]) / 6;
}

Confi guration constants can be
set via command line options:

./Stencil --n=500

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 150 of 700 (“Language refresher / introduction course” up to page 159)

A data-parallel stencil program

config const n = 100,
 max_iterations = 50,
 epsilon = 1.0E-5,
 initial_border = 1.0;

const Matrix_w_Borders = {0 .. n + 1, 0 .. n + 1, 0 .. n + 1},
 Matrix = Matrix_w_Borders [1 .. n, 1 .. n, 1 .. n],
 Single_Border = Matrix.exterior (1, 0, 0);

var Field : [Matrix_w_Borders] real,
 Next_Field : [Matrix] real;

proc Stencil (M : [/* Matrix_w_Borders */] real, (i, j, k) : index (Matrix)) : real {

 return (M [i - 1, j, k]
 + M [i + 1, j, k]
 + M [i, j - 1, k]
 + M [i, j + 1, k]
 + M [i, j, k + 1]
 + M [i, j, k - 1]) / 6;
}

0 + 1}

Defi ning domains to be used
for multi-dimensional array

declarations and assignments.

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 151 of 700 (“Language refresher / introduction course” up to page 159)

A data-parallel stencil program

config const n = 100,
 max_iterations = 50,
 epsilon = 1.0E-5,
 initial_border = 1.0;

const Matrix_w_Borders = {0 .. n + 1, 0 .. n + 1, 0 .. n + 1},
 Matrix = Matrix_w_Borders [1 .. n, 1 .. n, 1 .. n],
 Single_Border = Matrix.exterior (1, 0, 0);

var Field : [Matrix_w_Borders] real,
 Next_Field : [Matrix] real;

proc Stencil (M : [/* Matrix_w_Borders */] real, (i, j, k) : index (Matrix)) : real {

 return (M [i - 1, j, k]
 + M [i + 1, j, k]
 + M [i, j - 1, k]
 + M [i, j + 1, k]
 + M [i, j, k + 1]
 + M [i, j, k - 1]) / 6;
}

Declaring matrices of different,
yet related dimensions.

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 152 of 700 (“Language refresher / introduction course” up to page 159)

A data-parallel stencil program

config const n = 100,
 max_iterations = 50,
 epsilon = 1.0E-5,
 initial_border = 1.0;

const Matrix_w_Borders = {0 .. n + 1, 0 .. n + 1, 0 .. n + 1},
 Matrix = Matrix_w_Borders [1 .. n, 1 .. n, 1 .. n],
 Single_Border = Matrix.exterior (1, 0, 0);

var Field : [Matrix_w_Borders] real,
 Next_Field : [Matrix] real;

proc Stencil (M : [/* Matrix_w_Borders */] real, (i, j, k) : index (Matrix)) : real {

 return (M [i - 1, j, k]
 + M [i + 1, j, k]
 + M [i, j - 1, k]
 + M [i, j + 1, k]
 + M [i, j, k + 1]
 + M [i, j, k - 1]) / 6;
}

Function which calculates
a “stencil” value at a spot

inside a given matrix

Note the index type

i d

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 153 of 700 (“Language refresher / introduction course” up to page 159)

A data-parallel stencil program

config const n = 100,
 max_iterations = 50,
 epsilon = 1.0E-5,
 initial_border = 1.0;

const Matrix_w_Borders = {0 .. n + 1, 0 .. n + 1, 0 .. n + 1},
 Matrix = Matrix_w_Borders [1 .. n, 1 .. n, 1 .. n],
 Single_Border = Matrix.exterior (1, 0, 0);

var Field : [Matrix_w_Borders] real,
 Next_Field : [Matrix] real;

proc Stencil (M : [/* Matrix_w_Borders */] real, (i, j, k) : index (Matrix)) : real {

 return (M [i - 1, j, k]
 + M [i + 1, j, k]
 + M [i, j - 1, k]
 + M [i, j + 1, k]
 + M [i, j, k + 1]
 + M [i, j, k - 1]) / 6;
}

… anything on this slide
still not perfectly clear?

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 154 of 700 (“Language refresher / introduction course” up to page 159)

A data-parallel stencil program (cont.)

Field [Single_Border] = initial_border;

for l in 1 .. max_iterations {

 forall Matrix_Indices in Matrix do
 Next_Field (Matrix_Indices) = Stencil (Field, Matrix_Indices);

 const delta = max reduce abs (Field [Matrix] - Next_Field);

 Field [Matrix] = Next_Field;

 if delta < epsilon then break;
}

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 155 of 700 (“Language refresher / introduction course” up to page 159)

A data-parallel stencil program (cont.)

Field [Single_Border] = initial_border;

for l in 1 .. max_iterations {

 forall Matrix_Indices in Matrix do
 Next_Field (Matrix_Indices) = Stencil (Field, Matrix_Indices);

 const delta = max reduce abs (Field [Matrix] - Next_Field);

 Field [Matrix] = Next_Field;

 if delta < epsilon then break;
}

Scalar to 2-d array-slice assignment

(Technically a 3-d domain with
two degenerate dimensions)

3-d array to 3-d array-slice assignment

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 156 of 700 (“Language refresher / introduction course” up to page 159)

A data-parallel stencil program (cont.)

Field [Single_Border] = initial_border;

for l in 1 .. max_iterations {

 forall Matrix_Indices in Matrix do
 Next_Field (Matrix_Indices) = Stencil (Field, Matrix_Indices);

 const delta = max reduce abs (Field [Matrix] - Next_Field);

 Field [Matrix] = Next_Field;

 if delta < epsilon then break;
}

Data parallel application
of the Stencil function
to the whole 3-d matrix

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 157 of 700 (“Language refresher / introduction course” up to page 159)

A data-parallel stencil program (cont.)

Field [Single_Border] = initial_border;

for l in 1 .. max_iterations {

 forall Matrix_Indices in Matrix do
 Next_Field (Matrix_Indices) = Stencil (Field, Matrix_Indices);

 const delta = max reduce abs (Field [Matrix] - Next_Field);

 Field [Matrix] = Next_Field;

 if delta < epsilon then break;
}

Data parallel (divide-and-conquer)

application of the max function to
the component-wise differences.

“3-d data-parallel version” of (Haskell):

foldr max minBound $ zipWith (-) field next_field

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 158 of 700 (“Language refresher / introduction course” up to page 159)

A data-parallel stencil program (cont.)

Field [Single_Border] = initial_border;

for l in 1 .. max_iterations {

 forall Matrix_Indices in Matrix do
 Next_Field (Matrix_Indices) = Stencil (Field, Matrix_Indices);

 const delta = max reduce abs (Field [Matrix] - Next_Field);

 Field [Matrix] = Next_Field;

 if delta < epsilon then break;
}

… anything on this slide
still not perfectly clear?

Language refresher / introduction course

© 2015 Uwe R. Zimmer, The Australian National University page 159 of 700 (“Language refresher / introduction course” up to page 159)

Summary

Language refresher / introduction course

• Specifi cation and implementation (body) parts, basic types

• Exceptions & Contracts

• Information hiding in specifi cations (‘private’)

• Generic programming

• Tasking

• Monitors and synchronisation (‘protected’, ‘entries’, ‘selects’, ‘accepts’)

• Abstract types and dispatching

• Data parallel operations

1
Introduction to Concurrency

Uwe R. Zimmer - The Australian National University

Concurrent & Distributed Systems 2015

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 161 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

References for this chapter

[Ben-Ari06]
M. Ben-Ari
Principles of Concurrent and Distributed Programming
2006, second edition, Prentice-Hall, ISBN 0-13-711821-X

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 162 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

Forms of concurrency

What is concurrency?
Working defi nitions:

• literally ‘concurrent’ means:

Adj.: Running together in space, as parallel lines; go-
ing on side by side, as proceedings; occurring togeth-
er, as events or circumstances; existing or arising togeth-
er; conjoint, associated [Oxfords English Dictionary]

• technically ‘concurrent’ is usually defi ned negatively as:

If there is no observer who can identify two events as being in strict
temporal sequence (i.e. one event has fully terminated before the
other one started) then these two events are considered concurrent.

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 163 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

Forms of concurrency

Why do we need/have concurrency?

• Physics, engineering, electronics, biology, …

 basically every real world system is concurrent!
• Sequential processing is suggested by most kernel computer architectures

… yet (almost) all current processor architectures have concurrent elements

… and most computer systems are part of a concurrent network
• Strict sequential processing is suggested by the most widely used programming languages

… which is a reason why you might believe that concurrent computing is rare/exotic/hard

 Sequential programming delivers some
fundamental components for concurrent programming

 but we need to add a number of further crucial concepts

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 164 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

Forms of concurrency

Why would a computer scientist consider concurrency?

 … to be able to connect computer systems with the real world

 … to be able to employ / design concurrent parts of computer architectures

 … to construct complex software packages (operating systems, compilers, databases, …)

 … to understand where sequential and/or concurrent programming is required

… or: to understand where sequential or concurrent programming can be chosen freely
 … to enhance the reactivity of a system

 …

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 165 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

Forms of concurrency

A computer scientist’s view on concurrency

• Overlapped I/O and
computation

 Employ interrupt programming
to handle I/O

• Multi-programming
 Allow multiple independent programs
to be executed on one CPU

• Multi-tasking
 Allow multiple interacting processes
to be executed on one CPU

• Multi-processor systems
 Add physical/real concurrency

• Parallel Machines &
distributed operating systems

 Add (non-deterministic)
communication channels

• General network architectures
 Allow for any form of communicating,
distributed entities

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 166 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

Forms of concurrency

A computer scientist’s view on concurrency
Terminology for physically concurrent machines architectures:

• SISD
[singe instruction, single data]

 Sequential processors

• SIMD
[singe instruction, multiple data]

 Vector processors

• MISD
[multiple instruction, single data]

 Pipelined processors

• MIMD
[multiple instruction, multiple data]

 Multi-processors or computer networks

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 167 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

Forms of concurrency

An engineer’s view on concurrency

 Multiple physical, coupled, dynamical systems form
the actual environment and/or task at hand

 In order to model and control such a system, its inherent concurrency needs to be considered

 Multiple less powerful processors are often preferred over a single high-performance cpu

 The system design of usually strictly based on the structure of the given physical system.

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 168 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

Forms of concurrency

Does concurrency lead to chaos?
Concurrency often leads to the following features / issues / problems:

• non-deterministic phenomena

• non-observable system states

• results may depend on more than just the input parameters and states at start time
(timing, throughput, load, available resources, signals … throughout the execution)

• non-reproducible debugging?

Meaningful employment of concurrent systems features:

• non-determinism employed where the underlying system is non-deterministic

• non-determinism employed where the actual execution sequence is meaningless

• synchronization employed where adequate … but only there

 Control & monitor where required (and do it right), but not more …

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 169 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

Models and Terminology

Concurrency on different abstraction levels/perspectives
 Networks

• Multi-CPU network nodes and other specialized sub-networks

• Single-CPU network nodes – still including buses & I/O sub-systems

• Single-CPUs

• Operating systems (& distributed operating systems)

 Processes & threads

 High-level concurrent programming

 Assembler level concurrent programming

• Individual concurrent units inside one CPU

• Individual electronic circuits

• …

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 170 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

Models and Terminology

The concurrent programming abstraction

1. What appears sequential on a higher abstraction level,
is usually concurrent at a lower abstraction level:

 e.g. low-level concurrent I/O drivers,
which might not be visible at a higher programming level

2. What appears concurrent on a higher abstraction level,
might be sequential at a lower abstraction level:

 e.g. Multi-processing systems,
which are executed on a single, sequential CPU

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 171 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

Models and Terminology

The concurrent programming abstraction

• ‘concurrent’ is technically defi ned negatively as:
If there is no observer who can identify two events as being in

strict temporal sequence (i.e. one event has fully terminated before the
other one starts up), then these two events are considered concurrent.

• ‘concurrent’ in the context of programming:
“Concurrent programming abstraction is the study of

interleaved execution sequences of the atomic
instructions of sequential processes.”

(Ben-Ari)

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 172 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

Models and Terminology

The concurrent programming abstraction

Concurrent program ::=
Multiple sequential programs (processes or threads)
which are executed concurrently (simultaneously).

P.S. it is generally assumed that concurrent execution means that there
is one execution unit (processor) per sequential program

• even though this is usually not technically correct, it is still an often valid,
conservative assumption in the context of concurrent programming.

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 173 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

Models and Terminology

The concurrent programming abstraction

 No interaction between concurrent system parts means that we can
analyze them individually as pure sequential programs [end of course].

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 174 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

Models and Terminology

The concurrent programming abstraction

 No interaction between concurrent system parts means that we can
analyze them individually as pure sequential programs [end of course].

 Interaction occurs in form of:

• Contention (implicit interaction):
multiple concurrent execution units
ycompete for one shared resource

• Communication (explicit interaction):
Explicit passing of information and/or explicit synchronization

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 175 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

Models and Terminology

The concurrent programming abstraction

Time-line or Sequence?

Consider time (durations) explicitly:
 Real-time systems join the appropriate courses

Consider the sequence of interaction points only:
 Non-real-time systems stay in your seat

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 176 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

Models and Terminology

The concurrent programming abstraction

Correctness of concurrent non-real-time systems
[logical correctness]:

• does not depend on clock speeds / execution times / delays

• does not depend on actual interleaving of concurrent processes

 holds true for on all possible sequences of interaction points

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 177 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

Models and Terminology

The concurrent programming abstraction

Correctness vs. testing in concurrent systems:
Slight changes in external triggers may (and usually does)
result in completely different schedules (interleaving):

 Concurrent programs which depend in any way on external infl uences cannot be
tested without modelling and embedding those infl uences into the test process.

 Designs which are provably correct with respect to the specifi cation
and are independent of the actual timing behavior are essential.

P.S. some timing restrictions for the scheduling still persist
in non-real-time systems, e.g. ‘fairness’

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 178 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

Models and Terminology

The concurrent programming abstraction

Atomic operations:
Correctness proofs / designs in concurrent systems rely on the assumptions of

‘atomic operations’ [detailed discussion later]:

• complex and powerful atomic operations ease the correctness
proofs, but may limit fl exibility in the design

• simple atomic operations are theoretically suffi cient, but may lead to
complex systems which correctness cannot be proven in practice.

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 179 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

Models and Terminology

The concurrent programming abstraction

Standard concepts of correctness:

• Partial correctness:
(() ((,))) (,)P I terminates Program I O Q I O&/

• Total correctness:
() (((,)) (,))P I terminates Program I O Q I O& /

where I, O are input and output sets,
P is a property on the input set,

and Q is a relation between input and output sets

 do these concepts apply to and are suffi cient for concurrent systems?

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 180 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

Models and Terminology

The concurrent programming abstraction

Extended concepts of correctness in concurrent systems:
 ¬ Termination is often not intended or even considered a failure

Safety properties:
(() (,)) (,)P I Processes I S Q I S&/ X

where QX means that Q does always hold

Liveness properties:
(() (,)) (,)P I Processes I S Q I S&/ o
where Qo means that Q does eventually hold (and will then stay true)

and S is the current state of the concurrent system

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 181 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

Models and Terminology

The concurrent programming abstraction

Safety properties:
(() (,)) (,)P I Processes I S Q I S&/ X

where QX means that Q does always hold

Examples:

• Mutual exclusion (no resource collisions)

• Absence of deadlocks
(and other forms of ‘silent death’ and ‘freeze’ conditions)

• Specifi ed responsiveness or free capabilities
(typical in real-time / embedded systems or server applications)

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 182 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

Models and Terminology

The concurrent programming abstraction

Liveness properties:
(() (,)) (,)P I Processes I S Q I S&/ o
where Qo means that Q does eventually hold (and will then stay true)

Examples:

• Requests need to complete eventually

• The state of the system needs to be displayed eventually

• No part of the system is to be delayed forever (fairness)

 Interesting liveness properties can become very hard to proof

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 183 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

Introduction to processes and threads

1 CPU per
control-fl ow

Specifi c confi gurations
only, e.g.:

• Distributed µcontrollers.

• Physical process
control systems:

1 cpu per task,
connected via a
bus-system.

 Process management
(scheduling) not required.

 Shared memory access
need to be coordinated.

CPU
stack

code

CPU
stack

code

CPU stack code

address space 1

shared memory

CPU
stack

code

CPU stack code

CPU stack code

address space n

shared memory

…

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 184 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

Introduction to processes and threads

1 CPU for all
control-fl ows

• OS: emulate one CPU
for every control-fl ow:

Multi-tasking
operating system

 Support for memory
protection essential.

 Process management
(scheduling) required.

 Shared memory access
need to be coordinated.

stack
code

stack
code

stack code

address space 1

shared memory

stack
code

stack code

CPU

stack code

address space n

shared memory

…

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 185 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

Introduction to processes and threads

Processes

Process ::=

Address space
+ Control fl ow(s)

 Kernel has full
knowledge about all
processes as well as their
states, requirements and
currently held resources.

stack
code

stack
code

stack code

address space 1

shared memory

stack
code

stack code

CPU

stack code

address space n

shared memory

…

p
ro

ce
ss

 1

p
ro

ce
ss

 n

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 186 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

Introduction to processes and threads

Threads
Threads (individual control-
fl ows) can be handled:

• Inside the OS:

 Kernel scheduling.

• Thread can easily
be connected to
external events (I/O).

• Outside the OS:

 User-level scheduling.

• Threads may need
to go through their
parent process
to access I/O.

stack
thread

stack
thread

stack thread

address space 1

shared memory

stack
thread

stack thread

CPU

stack thread

address space n

shared memory

…

p
ro

ce
ss

 1

p
ro

ce
ss

 n

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 187 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

Introduction to processes and threads

Symmetric
Multiprocessing

(SMP)
All CPUs share the same
physical address space
(and access to resources).

 Any process / thread
can be executed on
any available CPU.

stack
thread

stack
thread

stack thread

address space 1

shared memory

stack
thread

stack thread

stack thread

address space n

shared memory

…

p
ro

ce
ss

 1

p
ro

ce
ss

 n

CPU CPU CPUCPU …

shared memory

p
h

ys
ic

al
 a

d
d

re
ss

 s
p

ac
e

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 188 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

Introduction to processes and threads

Processes) Threads

Also processes can share memory and the specifi c defi nition of threads
is different in different operating systems and contexts:

 Threads can be regarded as a group of processes, which
share some resources (process-hierarchy).

 Due to the overlap in resources, the attributes attached to
threads are less than for ‘fi rst-class-citizen-processes’.

 Thread switching and inter-thread communications can be
more effi cient than switching on process level.

 Scheduling of threads depends on the actual thread implementations:

• e.g. user-level control-fl ows, which the kernel has no knowledge about at all.

• e.g. kernel-level control-fl ows, which are handled as processes with some restrictions.

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 189 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

Introduction to processes and threads

Process Control Blocks

• Process Id

• Process state:
{created, ready, executing, blocked, suspended, bored …}

• Scheduling attributes:
Priorities, deadlines, consumed CPU-time, …

• CPU state: Saved/restored information while context
switches (incl. the program counter, stack pointer, …)

• Memory attributes / privileges:
Memory base, limits, shared areas, …

• Allocated resources / privileges:
Open and requested devices and fi les, …

… PCBs (links thereof) are commonly enqueued at a certain
state or condition (awaiting access or change in state)

Process Id

Process state

Saved registers
(complete CPU state)

Scheduling info

Memory spaces /
privileges

Allocated resources /
privileges

Process Control Blocks (PCBs)

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 190 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

Process states

• created: the task is ready to run, but
not yet considered by any dispatcher

 waiting for admission

• ready: ready to run
 waiting for a free CPU

• running: holds a CPU and executes

• blocked: not ready to run
 waiting for a resource

blockedblocked

ready running

blocked

dispatch

timeout

block
release

created

admit

terminated

finish

m
ai

n
m

em
o

ry

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 191 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

Process states

• created: the task is ready to run, but
not yet considered by any dispatcher

 waiting for admission

• ready: ready to run
 waiting for a free CPU

• running: holds a CPU and executes

• blocked: not ready to run
 waiting for a resource

• suspended states: swapped out of
main memory
(none time critical processes)

 waiting for main memory
space (and other resources)

blockedblocked

ready running

blocked

dispatch

timeout

block
release

created

admit

terminated

finish

blockedblockedblocked, susp.

suspend (swap-out)

ready, susp.

suspend (swap out)

release

reload (swap in)

m
ai

n
m

em
o

ry
se

co
nd

ar
y

m
em

o
ry

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 192 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

Process states

• created: the task is ready to run, but
not yet considered by any dispatcher

 waiting for admission

• ready: ready to run
 waiting for a free CPU

• running: holds a CPU and executes

• blocked: not ready to run
 waiting for a resource

• suspended states: swapped out of
main memory
(none time critical processes)

 waiting for main memory
space (and other resources)

 dispatching and suspending can
now be independent modules

blockedblocked

ready running

blocked

dispatch

timeout

block
release

created

admit

terminated

finish

blockedblockedblocked, susp.

suspend (swap-out)

ready, susp.

suspend (swap out)

release

reload (swap in)

m
ai

n
m

em
o

ry
se

co
nd

ar
y

m
em

o
ry

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 193 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

Process states

CPU
creation

ydaerhctab

ready, suspended

blocked, suspended

blocked

pre-emption or cycle done

terminationn

block or synchronize

executing
admitted dispatch

unblock suspend (swap-out)

swap-in

swap-out

unblock

suspend (swap-out)

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 194 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

UNIX processes

In UNIX systems tasks are created by ‘cloning’
pid = fork ();

resulting in a duplication of the current process

… returning ‘0’ to the newly created process (the ‘child’ process)

… returning the process id of the child process to the creating process (the ‘parent’ process)
… or returning ‘-1’ as C-style indication of a failure (in void of actual exception handling)

Frequent usage:

if (fork () == 0) {
… the child’s task …
… often implemented as: exec (“absolute path to executable file“, “args“);
exit (0); /* terminate child process */
} else {
… the parent’s task …
pid = wait (); /* wait for the termination of one child process */
}

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 195 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

UNIX processes

Communication between UNIX tasks (‘pipes’)
int data_pipe [2], c, rc;

if (pipe (data_pipe) == -1) {
 perror (“no pipe“); exit (1);
}

if (fork () == 0) {
 close (data_pipe [1]);
 while ((rc = read
 (data_pipe [0], &c, 1)) > 0) {
 putchar (c);
 }
 if (rc == -1) {
 perror (“pipe broken“);
 close (data_pipe [0]);
 exit (1);
 }
 close (data_pipe [0]); exit (0);

} else {

 close (data_pipe [0]);
 while ((c = getchar ()) > 0) {
 if (write(data_pipe[1], &c, 1)== -1) {
 perror (“pipe broken“);
 close (data_pipe [1]);
 exit (1);
 };
 }
 close (data_pipe [1]);
 pid = wait ();
}

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 196 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

Concurrent programming languages

Requirement
• Concept of tasks, threads or other potentially concurrent entities

Frequently requested essential elements

• Support for management or concurrent entities (create, terminate, …)

• Support for contention management (mutual exclusion, …)

• Support for synchronization (semaphores, monitors, …)

• Support for communication (message passing, shared memory, rpc …)

• Support for protection (tasks, memory, devices, …)

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 197 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

Concurrent programming languages

Language candidates

 Explicit concurrency

• Ada, C++, Rust

• Chill

• Erlang

• Go

• Chapel, X10

• Occam, CSP

• All .net languages

• Java, Scala, Clojure

• Modula-2, Modula-3

• …

 Implicit (potential)
concurrency

• Lisp, Haskell, Caml,
Miranda, and any other
functional language

• Smalltalk, Squeak

• Prolog

• Esterel, Lustre, Signal

 Wannabe concurrency

• Ruby, Python
[mostly broken due to
global interpreter locks]

 No support:

• Eiffel, Pascal

• C

• Fortran, Cobol, Basic…

 Libraries & interfaces
(outside language
defi nitions)

• POSIX

• MPI (Message
Passing Interface)

• …

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 198 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

Languages with implicit concurrency: e.g. functional programming

Implicit concurrency in some programming schemes
Quicksort in a functional language (here: Haskell):

qsort [] = []
qsort (x:xs) = qsort [y | y <- xs, y < x] ++ [x] ++ qsort [y | y <- xs, y >= x]

Pure functional programming is side-effect free
 Parameters can be evaluated independently could run concurrently

Some functional languages allow for lazy evaluation, i.e. sub-
expressions are not necessarily evaluated completely:

borderline = (n /= 0) && (g (n) > h (n))

 If n equals zero then the evaluation of g(n) and h(n) can be stopped (or not even be started).

 Concurrent program parts should be interruptible in this case.

Short-circuit evaluations in imperative languages assume explicit sequential execution:

if Pointer /= nil and then Pointer.next = nil then …

Introduction to Concurrency

© 2015 Uwe R. Zimmer, The Australian National University page 199 of 700 (chapter 1: “Introduction to Concurrency” up to page 199)

Summary

Concurrency – The Basic Concepts
• Forms of concurrency

• Models and terminology

• Abstractions and perspectives: computer science, physics & engineering

• Observations: non-determinism, atomicity, interaction, interleaving

• Correctness in concurrent systems

• Processes and threads

• Basic concepts and notions

• Process states

• Concurrent programming languages:

• Explicit concurrency: e.g. Ada, Chapel

• Implicit concurrency: functional programming – e.g. Haskell, Caml

2
Mutual Exclusion

Uwe R. Zimmer - The Australian National University

Concurrent & Distributed Systems 2015

Mutual Exclusion

© 2015 Uwe R. Zimmer, The Australian National University page 201 of 700 (chapter 2: “Mutual Exclusion” up to page 235)

References for this chapter

[Ben-Ari06]
M. Ben-Ari
Principles of Concurrent and Distributed Programming
2006, second edition, Prentice-Hall, ISBN 0-13-711821-X

Mutual Exclusion

© 2015 Uwe R. Zimmer, The Australian National University page 202 of 700 (chapter 2: “Mutual Exclusion” up to page 235)

Problem specifi cation

The general mutual exclusion scenario

• N processes execute (infi nite) instruction sequences concurrently.
Each instruction belongs to either a critical or non-critical section.

 Safety property ‘Mutual exclusion’:
Instructions from critical sections of two or more processes

must never be interleaved!

• More required properties:

• No deadlocks: If one or multiple processes try to enter their
critical sections then exactly one of them must succeed.

• No starvation: Every process which tries to enter one of
his critical sections must succeed eventually.

• Effi ciency: The decision which process may enter the critical section must be made
effi ciently in all cases, i.e. also when there is no contention in the fi rst place.

Mutual Exclusion

© 2015 Uwe R. Zimmer, The Australian National University page 203 of 700 (chapter 2: “Mutual Exclusion” up to page 235)

Problem specifi cation

The general mutual exclusion scenario

• N processes execute (infi nite) instruction sequences concurrently.
Each instruction belongs to either a critical or non-critical section.

 Safety property ‘Mutual exclusion’:
Instructions from critical sections of two or more processes

must never be interleaved!

• Further assumptions:

• Pre- and post-protocols can be executed before and after each critical section.

• Processes may delay infi nitely in non-critical sections.

• Processes do not delay infi nitely in critical sections.

Mutual Exclusion

© 2015 Uwe R. Zimmer, The Australian National University page 204 of 700 (chapter 2: “Mutual Exclusion” up to page 235)

Mutual exclusion: Atomic load & store operations

Atomic load & store operations

 Assumption 1: every individual base memory cell (word) load and store access is atomic

 Assumption 2: there is no atomic combined load-store access

task body P1 is

begin
 G := 1
 G := G + G;
end P1;

task body P2 is

begin
 G := 2
 G := G + G;
end P2;

task body P3 is

begin
 G := 3
 G := G + G;
end P3;

 What is the value of G?

G : Natural := 0; -- assumed to be mapped on a 1-word cell in memory

Mutual Exclusion

© 2015 Uwe R. Zimmer, The Australian National University page 205 of 700 (chapter 2: “Mutual Exclusion” up to page 235)

Mutual exclusion: Atomic load & store operations

Atomic load & store operations

 Assumption 1: every individual base memory cell (word) load and store access is atomic

 Assumption 2: there is no atomic combined load-store access

task body P1 is

begin
 G := 1
 G := G + G;
end P1;

task body P2 is

begin
 G := 2
 G := G + G;
end P2;

task body P3 is

begin
 G := 3
 G := G + G;
end P3;

 After the fi rst global initialisation, G can have almost any value between 0 and 24

 After the fi rst global initialisation, G will have exactly one value between 0 and 24

 After all tasks terminated, G will have exactly one value between 2 and 24

G : Natural := 0; -- assumed to be mapped on a 1-word cell in memory

Mutual Exclusion

© 2015 Uwe R. Zimmer, The Australian National University page 206 of 700 (chapter 2: “Mutual Exclusion” up to page 235)

Mutual exclusion: First attempt

type Task_Token is mod 2;
Turn: Task_Token := 0;

task body P0 is

begin
 loop
 ------ non_critical_section_0;
 loop exit when Turn = 0; end loop;
 ------ critical_section_0;
 Turn := Turn + 1;
 end loop;
end P0;

task body P1 is

begin
 loop
 ------ non_critical_section_1;
 loop exit when Turn = 1; end loop;
 ------ critical_section_1;
 Turn := Turn + 1;
 end loop;
end P1;

 Mutual exclusion?

 Deadlock?

 Starvation?

 Work without contention?

Mutual Exclusion

© 2015 Uwe R. Zimmer, The Australian National University page 207 of 700 (chapter 2: “Mutual Exclusion” up to page 235)

Mutual exclusion: First attempt

type Task_Token is mod 2;
Turn: Task_Token := 0;

task body P0 is

begin
 loop
 ------ non_critical_section_0;
 loop exit when Turn = 0; end loop;
 ------ critical_section_0;
 Turn := Turn + 1;
 end loop;
end P0;

task body P1 is

begin
 loop
 ------ non_critical_section_1;
 loop exit when Turn = 1; end loop;
 ------ critical_section_1;
 Turn := Turn + 1;
 end loop;
end P1;

 Mutual exclusion!

 No deadlock!

 No starvation!

 Locks up, if there is no contention!

Mutual Exclusion

© 2015 Uwe R. Zimmer, The Australian National University page 208 of 700 (chapter 2: “Mutual Exclusion” up to page 235)

Mutual exclusion: First attempt

type Task_Token is mod 2;
Turn: Task_Token := 0;

task body P0 is

begin
 loop
 ------ non_critical_section_0;
 loop exit when Turn = 0; end loop;
 ------ critical_section_0;
 Turn := Turn + 1;
 end loop;
end P0;

task body P1 is

begin
 loop
 ------ non_critical_section_1;
 loop exit when Turn = 1; end loop;
 ------ critical_section_1;
 Turn := Turn + 1;
 end loop;
end P1;

 Mutual exclusion!

 No deadlock!

 No starvation!

 Ineffi cient!

scatter:

if Turn = myTurn then
 Turn := Turn + 1;
end if

into the non-critical sections

0;

ical_section_0;
Turn = 00; ennnnnddddddd llllllooooooopp;;
al ooooooooooonn_______000000000;
1;;

taaasskkkkkkkkkkkkkk bbbbbbbbbbbbbooooooooooooooodddddddddddddddyyyyyyyyyyyyy P1 i

bbbbbbbbbeeeeeeeeeeeeeegggggiii
 looooppp
 ------ non

llllllloop exit
------ c

 Turn := Tu
 end loop;
end P1;

_______ssssssssseeeeeeeeccccccttttttt
=== 0

aaaaaaaaaa
rnnnnnnnnnnnnnnn ================================= 0000

aalll______________ ttiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiioooo
;;;;;;;;;;;;;

eeeeeeeeeeeeeeeennnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnndd ll
nnnnnnnnnnnnnnn ;;;;;;;;;;

pppppppppppppp;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

bbeeeeeeeeeeeeeeeeeee

 -

aaaaaaaaaaaaaaaaasssssssssssssssssssssssssssssssskkkkkkkkkkkkkkkkkkkkkkkk bbbbbbbbbbbbbbbbbbbbbbbb ddddddddddddddddddddddddddddddddddddddyy PPPPPP

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinnnnnnnnnnnnnnnnnnnnnnnnnn
oooooooooooooopp

Mutual Exclusion

© 2015 Uwe R. Zimmer, The Australian National University page 209 of 700 (chapter 2: “Mutual Exclusion” up to page 235)

Mutual exclusion: Second attempt

task body P1 is

begin
 loop
 ------ non_critical_section_1;
 loop
 exit when C2 = Out_CS;
 end loop;
 C1 := In_CS;
 ------ critical_section_1;
 C1 := Out_CS;
 end loop;
end P1;

task body P2 is

begin
 loop
 ------ non_critical_section_2;
 loop
 exit when C1 = Out_CS;
 end loop;
 C2 := In_CS;
 ------ critical_section_2;
 C2 := Out_CS;
 end loop;
end P2;

type Critical_Section_State is (In_CS, Out_CS);
C1, C2: Critical_Section_State := Out_CS;

 Any better?

Mutual Exclusion

© 2015 Uwe R. Zimmer, The Australian National University page 210 of 700 (chapter 2: “Mutual Exclusion” up to page 235)

Mutual exclusion: Second attempt

task body P1 is

begin
 loop
 ------ non_critical_section_1;
 loop
 exit when C2 = Out_CS;
 end loop;
 C1 := In_CS;
 ------ critical_section_1;
 C1 := Out_CS;
 end loop;
end P1;

task body P2 is

begin
 loop
 ------ non_critical_section_2;
 loop
 exit when C1 = Out_CS;
 end loop;
 C2 := In_CS;
 ------ critical_section_2;
 C2 := Out_CS;
 end loop;
end P2;

type Critical_Section_State is (In_CS, Out_CS);
C1, C2: Critical_Section_State := Out_CS;

 No mutual exclusion!

Mutual Exclusion

© 2015 Uwe R. Zimmer, The Australian National University page 211 of 700 (chapter 2: “Mutual Exclusion” up to page 235)

Mutual exclusion: Third attempt

task body P1 is

begin
 loop
 ------ non_critical_section_1;
 C1 := In_CS;
 loop
 exit when C2 = Out_CS;
 end loop;
 ------ critical_section_1;
 C1 := Out_CS;
 end loop;
end P1;

task body P2 is

begin
 loop
 ------ non_critical_section_2;
 C2 := In_CS;
 loop
 exit when C1 = Out_CS;
 end loop;
 ------ critical_section_2;
 C2 := Out_CS;
 end loop;
end P2;

type Critical_Section_State is (In_CS, Out_CS);
C1, C2: Critical_Section_State := Out_CS;

 Any better?

Mutual Exclusion

© 2015 Uwe R. Zimmer, The Australian National University page 212 of 700 (chapter 2: “Mutual Exclusion” up to page 235)

Mutual exclusion: Third attempt

task body P1 is

begin
 loop
 ------ non_critical_section_1;
 C1 := In_CS;
 loop
 exit when C2 = Out_CS;
 end loop;
 ------ critical_section_1;
 C1 := Out_CS;
 end loop;
end P1;

task body P2 is

begin
 loop
 ------ non_critical_section_2;
 C2 := In_CS;
 loop
 exit when C1 = Out_CS;
 end loop;
 ------ critical_section_2;
 C2 := Out_CS;
 end loop;
end P2;

type Critical_Section_State is (In_CS, Out_CS);
C1, C2: Critical_Section_State := Out_CS;

 Mutual exclusion!

 Potential deadlock!

Mutual Exclusion

© 2015 Uwe R. Zimmer, The Australian National University page 213 of 700 (chapter 2: “Mutual Exclusion” up to page 235)

Mutual exclusion: Forth attempt

task body P1 is

begin
 loop
 ------ non_critical_section_1;
 C1 := In_CS;
 loop
 exit when C2 = Out_CS;
 C1 := Out_CS; C1 := In_CS;
 end loop;
 ------ critical_section_1;
 C1 := Out_CS;
 end loop;
end P1;

task body P2 is

begin
 loop
 ------ non_critical_section_2;
 C2 := In_CS;
 loop
 exit when C1 = Out_CS;
 C2 := Out_CS; C2 := In_CS;
 end loop;
 ------ critical_section_2;
 C2 := Out_CS;
 end loop;
end P2;

type Critical_Section_State is (In_CS, Out_CS);
C1, C2: Critical_Section_State := Out_CS;

 Making any progress?

Mutual Exclusion

© 2015 Uwe R. Zimmer, The Australian National University page 214 of 700 (chapter 2: “Mutual Exclusion” up to page 235)

Mutual exclusion: Forth attempt

task body P1 is

begin
 loop
 ------ non_critical_section_1;
 C1 := In_CS;
 loop
 exit when C2 = Out_CS;
 C1 := Out_CS; C1 := In_CS;
 end loop;
 ------ critical_section_1;
 C1 := Out_CS;
 end loop;
end P1;

task body P2 is

begin
 loop
 ------ non_critical_section_2;
 C2 := In_CS;
 loop
 exit when C1 = Out_CS;
 C2 := Out_CS; C2 := In_CS;
 end loop;
 ------ critical_section_2;
 C2 := Out_CS;
 end loop;
end P2;

type Critical_Section_State is (In_CS, Out_CS);
C1, C2: Critical_Section_State := Out_CS;

 Mutual exclusion! No Deadlock!

 Potential starvation! Potential global livelock!

Mutual Exclusion

© 2015 Uwe R. Zimmer, The Australian National University page 215 of 700 (chapter 2: “Mutual Exclusion” up to page 235)

Mutual exclusion: Decker’s Algorithm

task type One_Of_Two_Tasks
 (this_Task : Task_Range);

task body One_Of_Two_Tasks is

 other_Task : Task_Range
 := this_Task + 1;

 begin
 ------ non_critical_section

 CSS (this_Task) := In_CS;
 loop
 exit when
 CSS (other_Task) = Out_CS;
 if Turn = other_Task then
 CSS (this_Task) := Out_CS;
 loop
 exit when Turn = this_Task;
 end loop;
 CSS (this_Task) := In_CS;
 end if;
 end loop;
 ------ critical section
 CSS (this_Task) := Out_CS;
 Turn := other_Task;
 end One_Of_Two_Tasks;

type Task_Range is mod 2;
type Critical_Section_State is (In_CS, Out_CS);

CSS : array (Task_Range) of Critical_Section_State := (others => Out_CS);
Turn : Task_Range := Task_Range’First;

Mutual Exclusion

© 2015 Uwe R. Zimmer, The Australian National University page 216 of 700 (chapter 2: “Mutual Exclusion” up to page 235)

Mutual exclusion: Decker’s Algorithm

task type One_Of_Two_Tasks
 (this_Task : Task_Range);

task body One_Of_Two_Tasks is

 other_Task : Task_Range
 := this_Task + 1;

 begin
 ------ non_critical_section

 CSS (this_Task) := In_CS;
 loop
 exit when
 CSS (other_Task) = Out_CS;
 if Turn = other_Task then
 CSS (this_Task) := Out_CS;
 loop
 exit when Turn = this_Task;
 end loop;
 CSS (this_Task) := In_CS;
 end if;
 end loop;
 ------ critical section
 CSS (this_Task) := Out_CS;
 Turn := other_Task;
 end One_Of_Two_Tasks;

type Task_Range is mod 2;
type Critical_Section_State is (In_CS, Out_CS);

CSS : array (Task_Range) of Critical_Section_State := (others => Out_CS);
Turn : Task_Range := Task_Range’First;

 Mutual exclusion!

 No deadlock!

 No starvation!

 No livelock!

 Two tasks only!

Mutual Exclusion

© 2015 Uwe R. Zimmer, The Australian National University page 217 of 700 (chapter 2: “Mutual Exclusion” up to page 235)

Mutual exclusion: Peterson’s Algorithm

task type One_Of_Two_Tasks
 (this_Task : Task_Range);

task body One_Of_Two_Tasks is

 other_Task : Task_Range
 := this_Task + 1;

 begin
 ------ non_critical_section

 CSS (this_Task) := In_CS;
 Last := this_Task;
 loop
 exit when
 CSS (other_Task) = Out_CS
 or else Last /= this_Task;
 end loop;
 ------ critical section
 CSS (this_Task) := Out_CS;
 end One_Of_Two_Tasks;

type Task_Range is mod 2;
type Critical_Section_State is (In_CS, Out_CS);

CSS : array (Task_Range) of Critical_Section_State := (others => Out_CS);
Last : Task_Range := Task_Range’First;

Mutual Exclusion

© 2015 Uwe R. Zimmer, The Australian National University page 218 of 700 (chapter 2: “Mutual Exclusion” up to page 235)

Mutual exclusion: Peterson’s Algorithm

task type One_Of_Two_Tasks
 (this_Task : Task_Range);

task body One_Of_Two_Tasks is

 other_Task : Task_Range
 := this_Task + 1;

 begin
 ------ non_critical_section

 CSS (this_Task) := In_CS;
 Last := this_Task;
 loop
 exit when
 CSS (other_Task) = Out_CS
 or else Last /= this_Task;
 end loop;
 ------ critical section
 CSS (this_Task) := Out_CS;
 end One_Of_Two_Tasks;

type Task_Range is mod 2;
type Critical_Section_State is (In_CS, Out_CS);

CSS : array (Task_Range) of Critical_Section_State := (others => Out_CS);
Last : Task_Range := Task_Range’First;

 e

 Mutual exclusion!

 No deadlock!

 No starvation!

 No livelock!

 Two tasks only!

Mutual Exclusion

© 2015 Uwe R. Zimmer, The Australian National University page 219 of 700 (chapter 2: “Mutual Exclusion” up to page 235)

Problem specifi cation

The general mutual exclusion scenario

• N processes execute (infi nite) instruction sequences concurrently.
Each instruction belongs to either a critical or non-critical section.

 Safety property ‘Mutual exclusion’:
Instructions from critical sections of two or more processes

must never be interleaved!

• More required properties:

• No deadlocks: If one or multiple processes try to enter their critic-
al sections then exactly one of them must succeed.

• No starvation: Every process which tries to enter one of
his critical sections must succeed eventually.

• Effi ciency: The decision which process may enter the critical section must
be made effi ciently in all cases, i.e. also when there is no contention.

Mutual Exclusion

© 2015 Uwe R. Zimmer, The Australian National University page 220 of 700 (chapter 2: “Mutual Exclusion” up to page 235)

Mutual exclusion: Bakery Algorithm

The idea of the Bakery Algorithm
A set of N Processes P PN1f competing for mutually exclusive execution of their critical regions.
Every process Pi out of P PN1f supplies: a globally readable number ti (‘ticket’) (initialized to ‘0’).

• Before a process Pi enters a critical section:

• Pi draws a new number t t>i j ; j i6 !

• Pi is allowed to enter the critical section iff: j i6 ! : t t<i j or t 0j =

• After a process left a critical section:

• Pi resets its t 0i =

Issues:
 Can you ensure that processes won’t read each others ticket numbers while still calculating?

 Can you ensure that no two processes draw the same number?

Mutual Exclusion

© 2015 Uwe R. Zimmer, The Australian National University page 221 of 700 (chapter 2: “Mutual Exclusion” up to page 235)

Mutual exclusion: Bakery Algorithm

task type P (this_id: Task_Range);

task body P is
 begin
 loop
 ------ non_critcal_section_1;

 Choosing (this_id) := True;
 Ticket (this_id) := Max (Ticket) + 1;
 Choosing (this_id) := False;

 for id in Task_Range loop
 if id /= this_id then
 loop
 exit when not Choosing (id);
 end loop;

 loop
 exit when
 Ticket (id) = 0
 or else
 Ticket (this_id) < Ticket (id)
 or else
 (Ticket (this_id) = Ticket (id)
 and then this_id < id);
 end loop;
 end if;
 end loop;
 ------ critical_section_1;
 Ticket (this_id) := 0;
 end loop;
 end P;

No_Of_Tasks : constant Positive := …;
type Task_Range is mod No_Of_Tasks;

Choosing : array (Task_Range) of Boolean := (others => False);
Ticket : array (Task_Range) of Natural := (others => 0);

Mutual Exclusion

© 2015 Uwe R. Zimmer, The Australian National University page 222 of 700 (chapter 2: “Mutual Exclusion” up to page 235)

Mutual exclusion: Bakery Algorithm

task type P (this_id: Task_Range);

task body P is
 begin
 loop
 ------ non_critcal_section_1;

 Choosing (this_id) := True;
 Ticket (this_id) := Max (Ticket) + 1;
 Choosing (this_id) := False;

 for id in Task_Range loop
 if id /= this_id then
 loop
 exit when not Choosing (id);
 end loop;

 loop
 exit when
 Ticket (id) = 0
 or else
 Ticket (this_id) < Ticket (id)
 or else
 (Ticket (this_id) = Ticket (id)
 and then this_id < id);
 end loop;
 end if;
 end loop;
 ------ critical_section_1;
 Ticket (this_id) := 0;
 end loop;
 end P;

No_Of_Tasks : constant Positive := …;
type Task_Range is mod No_Of_Tasks;

Choosing : array (Task_Range) of Boolean := (others => False);
Ticket : array (Task_Range) of Natural := (others => 0);

t
c
elllllsssssseeeeee

=
=

t when
cket (id) = 0
l

=> False);
=> 0);

 Mutual exclusion!

 No deadlock!

 No starvation!

 No livelock!

 Works for N processes!

oooooooopppppp

(ttttth
n t

 end if;;
d l

ti 1tion_1;

True;
x (Ticket) + 1;
False;

oop

 or else
 (Ticket (

and then
end loop;
end if;

 Extensive and communication
intensive protocol
(even if there is no contention)

Mutual Exclusion

© 2015 Uwe R. Zimmer, The Australian National University page 223 of 700 (chapter 2: “Mutual Exclusion” up to page 235)

Beyond atomic memory access

Realistic hardware support

Atomic test-and-set operations:
• [L := C; C := 1]

Atomic exchange operations:
• [Temp := L; L := C; C := Temp]

Memory cell reservations:
• L : R

= C; – read by using a special instruction, which puts a ‘reservation’ on C

• … calculate a <new value> for C …

• C : T
= <new value>;

– succeeds iff C was not manipulated by other processors or devices since the reservation

Mutual Exclusion

© 2015 Uwe R. Zimmer, The Australian National University page 224 of 700 (chapter 2: “Mutual Exclusion” up to page 235)

Mutual exclusion: atomic test-and-set operation

task body Pi is

L : Flag;

begin
 loop
 ------ non_critical_section_i;
 loop
 [L := C; C := 1];
 exit when L = 0;
 ------ change process
 end loop;
 ------ critical_section_i;
 C := 0;
 end loop;
end Pi;

task body Pj is

L : Flag;

begin
 loop
 ------ non_critical_section_j;
 loop
 [L := C; C := 1];
 exit when L = 0;
 ------ change process
 end loop;
 ------ critical_section_j;
 C := 0;
 end loop;
end Pj;

type Flag is Natural range 0..1; C : Flag := 0;

 Works?

Mutual Exclusion

© 2015 Uwe R. Zimmer, The Australian National University page 225 of 700 (chapter 2: “Mutual Exclusion” up to page 235)

Mutual exclusion: atomic test-and-set operation

task body Pi is

L : Flag;

begin
 loop
 ------ non_critical_section_i;
 loop
 [L := C; C := 1];
 exit when L = 0;
 ------ change process
 end loop;
 ------ critical_section_i;
 C := 0;
 end loop;
end Pi;

task body Pj is

L : Flag;

begin
 loop
 ------ non_critical_section_j;
 loop
 [L := C; C := 1];
 exit when L = 0;
 ------ change process
 end loop;
 ------ critical_section_j;
 C := 0;
 end loop;
end Pj;

type Flag is Natural range 0..1; C : Flag := 0;

 Mutual exclusion!, No deadlock!, No global live-lock!

 Works for any dynamic number of processes.

 Individual starvation possible! Busy waiting loops!

Mutual Exclusion

© 2015 Uwe R. Zimmer, The Australian National University page 226 of 700 (chapter 2: “Mutual Exclusion” up to page 235)

Mutual exclusion: atomic exchange operation

task body Pi is

L : Flag := 1;

begin
 loop
 ------ non_critical_section_i;
 loop
 [Temp := L; L := C; C := Temp];
 exit when L = 0;
 ------ change process
 end loop;
 ------ critical_section_i;
 L := 1; C := 0;
 end loop;
end Pi;

task body Pj is

L : Flag := 1;

begin
 loop
 ------ non_critical_section_j;
 loop
 [Temp := L; L := C; C := Temp];
 exit when L = 0;
 ------ change process
 end loop;
 ------ critical_section_j;
 L := 1; C := 0;
 end loop;
end Pj;

type Flag is Natural range 0..1; C : Flag := 0;

 Mutual exclusion!, No deadlock!, No global live-lock!

 Works for any dynamic number of processes.

 Individual starvation possible! Busy waiting loops!

Mutual Exclusion

© 2015 Uwe R. Zimmer, The Australian National University page 227 of 700 (chapter 2: “Mutual Exclusion” up to page 235)

Mutual exclusion: memory cell reservation

task body Pi is

L : Flag;

begin
 loop
 ------ non_critical_section_i;
 loop

 L :
R
=C; C :

T
= 1;

 exit when Untouched and L = 0;
 ------ change process
 end loop;
 ------ critical_section_i;
 C := 0;
 end loop;
end Pi;

task body Pj is

L : Flag;

begin
 loop
 ------ non_critical_section_j;
 loop

 L :
R
=C; C :

T
= 1;

 exit when Untouched and L = 0;
 ------ change process
 end loop;
 ------ critical_section_j;
 C := 0;
 end loop;
end Pj;

type Flag is Natural range 0..1; C : Flag := 0;

 Mutual exclusion!, No deadlock!, No global live-lock!

 Works for any dynamic number of processes.

 Individual starvation possible! Busy waiting loops!

Mutual Exclusion

© 2015 Uwe R. Zimmer, The Australian National University page 228 of 700 (chapter 2: “Mutual Exclusion” up to page 235)

Beyond atomic hardware operations

Semaphores
Basic defi nition (Dijkstra 1968)

Assuming the following three conditions on a shared memory cell between processes:

• a set of processes agree on a variable S operating as a
fl ag to indicate synchronization conditions

• an atomic operation P on S — for ‘passeren’ (Dutch for ‘pass’):

P(S): [as soon as S > 0 then S := S - 1] this is a potentially delaying operation

• an atomic operation V on S — for ‘vrygeven’ (Dutch for ‘to release’):

V(S): [S := S + 1]

 then the variable S is called a Semaphore.

Mutual Exclusion

© 2015 Uwe R. Zimmer, The Australian National University page 229 of 700 (chapter 2: “Mutual Exclusion” up to page 235)

Beyond atomic hardware operations

Semaphores
… as supplied by operating systems and runtime environments

• a set of processes P PN1f agree on a variable S operating
as a fl ag to indicate synchronization conditions

• an atomic operation Wait on S: (aka ‘Suspend_Until_True’, ‘sem_wait’, …)

Process Pi : Wait (S):
 [if S > 0 then S := S - 1

 else suspend Pi on S]

• an atomic operation Signal on S: (aka ‘Set_True’, ‘sem_post’, …)

Process Pi : Signal (S):
 [if Pj7 suspended on S then release Pj
 else S := S + 1]

 then the variable S is called a Semaphore in a scheduling environment.

Mutual Exclusion

© 2015 Uwe R. Zimmer, The Australian National University page 230 of 700 (chapter 2: “Mutual Exclusion” up to page 235)

Beyond atomic hardware operations

Semaphores
Types of semaphores:

• Binary semaphores: restricted to [0, 1] or [False, True] resp.
Multiple V (Signal) calls have the same effect than a single call.

• Atomic hardware operations support binary semaphores.

• Binary semaphores are suffi cient to create all other semaphore forms.

• General semaphores (counting semaphores): non-negative number; (range lim-
ited by the system) P and V increment and decrement the semaphore by one.

• Quantity semaphores: The increment (and decrement) value for
the semaphore is specifi ed as a parameter with P and V.

 All types of semaphores must be initialized:
often the number of processes which are allowed inside a critical section, i.e. ‘1’.

Mutual Exclusion

© 2015 Uwe R. Zimmer, The Australian National University page 231 of 700 (chapter 2: “Mutual Exclusion” up to page 235)

Semaphores

S : Semaphore := 1;

task body Pi is

begin

 loop
 ------ non_critical_section_i;
 wait (S);
 ------ critical_section_i;
 signal (S);
 end loop;
end Pi;

task body Pj is

begin

 loop
 ------ non_critical_section_j;
 wait (S);
 ------ critical_section_j;
 signal (S);
 end loop;
end Pi;

 Works?

Mutual Exclusion

© 2015 Uwe R. Zimmer, The Australian National University page 232 of 700 (chapter 2: “Mutual Exclusion” up to page 235)

Semaphores

S : Semaphore := 1;

task body Pi is

begin

 loop
 ------ non_critical_section_i;
 wait (S);
 ------ critical_section_i;
 signal (S);
 end loop;
end Pi;

task body Pj is

begin

 loop
 ------ non_critical_section_j;
 wait (S);
 ------ critical_section_j;
 signal (S);
 end loop;
end Pi;

 Mutual exclusion!, No deadlock!, No global live-lock!

 Works for any dynamic number of processes

 Individual starvation possible!

Mutual Exclusion

© 2015 Uwe R. Zimmer, The Australian National University page 233 of 700 (chapter 2: “Mutual Exclusion” up to page 235)

Semaphores

S1, S2 : Semaphore := 1;

task body Pi is

begin

 loop
 ------ non_critical_section_i;
 wait (S1);
 wait (S2);
 ------ critical_section_i;
 signal (S2);
 signal (S1);
 end loop;
end Pi;

task body Pj is

begin

 loop
 ------ non_critical_section_j;
 wait (S2);
 wait (S1);
 ------ critical_section_j;
 signal (S1);
 signal (S2);
 end loop;
end Pi;

 Works too?

Mutual Exclusion

© 2015 Uwe R. Zimmer, The Australian National University page 234 of 700 (chapter 2: “Mutual Exclusion” up to page 235)

Semaphores

S1, S2 : Semaphore := 1;

task body Pi is

begin

 loop
 ------ non_critical_section_i;
 wait (S1);
 wait (S2);
 ------ critical_section_i;
 signal (S2);
 signal (S1);
 end loop;
end Pi;

task body Pj is

begin

 loop
 ------ non_critical_section_j;
 wait (S2);
 wait (S1);
 ------ critical_section_j;
 signal (S1);
 signal (S2);
 end loop;
end Pi;

 Mutual exclusion!, No global live-lock!

 Works for any dynamic number of processes.

 Individual starvation possible!

 Deadlock possible!

Mutual Exclusion

© 2015 Uwe R. Zimmer, The Australian National University page 235 of 700 (chapter 2: “Mutual Exclusion” up to page 235)

Summary

Mutual Exclusion

• Defi nition of mutual exclusion

• Atomic load and atomic store operations
• … some classical errors

• Decker’s algorithm, Peterson’s algorithm

• Bakery algorithm

• Realistic hardware support
• Atomic test-and-set, Atomic exchanges, Memory cell reservations

• Semaphores
• Basic semaphore defi nition

• Operating systems style semaphores

3
Communication & Synchronization

Uwe R. Zimmer - The Australian National University

Concurrent & Distributed Systems 2015

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 237 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

References for this chapter

[Ben-Ari06]
M. Ben-Ari
Principles of Concurrent and Dis-
tributed Programming
2006, second edition, Prentice-
Hall, ISBN 0-13-711821-X

 [Barnes2006]
 Barnes, John
 Programming in Ada 2005
 Addison-Wesley, Pearson education, ISBN-
13 978-0-321-34078-8, Harlow, England, 2006

 [Gosling2005]
 Gosling, James , Joy, B , Steele,
Guy & Bracha, Gilad
 The Java™ Language Specifi cation
- third edition
 2005

[AdaRM2012]
Ada Reference Manual - Lan-
guage and Standard Libraries;
ISO/IEC 8652:201x (E)

[Chapel 1.11.0 Language
Specifi cation Version 0.97]

see course pages or http://chapel.cray.com/
spec/spec-0.97.pdf released on 2. April 2015

 [Saraswat2010]
 Saraswat, Vijay
 Report on the Programming Language X10
Version 2.01
 Draft — January 13, 2010

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 238 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Overview

Synchronization methods
Shared memory based synchronization

• Semaphores C, POSIX — Dijkstra

• Conditional critical regions Edison (experimental)

• Monitors Modula-1, Mesa — Dijkstra, Hoare, …

• Mutexes & conditional variables POSIX

• Synchronized methods Java, C#, …

• Protected objects Ada

• Atomic blocks Chapel, X10

Message based synchronization
• Asynchronous messages e.g. POSIX, …

• Synchronous messages e.g. Ada, CHILL, Occam2, …

• Remote invocation, remote procedure call e.g. Ada, …

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 239 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Motivation

Side effects
Operations have side effects which are visible …

either
 … locally only

(and protected by runtime-, os-, or hardware-mechanisms)

or
 … outside the current process

 If side effects transcend the local process then all
forms of access need to be synchronized.

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 240 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Sanity check

i++;

{in one thread}

if i > n {i=0;}

{in another thread}

Do we need to? – really?
int i; {declare globally to multiple threads}

Are those operations atomic?

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 241 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Sanity check

i++;

{in one thread}

if i > n {i=0;}

{in another thread}

Do we need to? – really?
int i; {declare globally to multiple threads}

Depending on the hardware and the compiler, it might be atomic, it might be not:
 Handling a 64-bit integer on a 8- or 16-bit controller will not be atomic

… yet perhaps it is an 8-bit integer.
 Unaligned manipulations on the main memory will usually not be atomic

… yet perhaps it is a aligned.
 Broken down to a load-operate-store cycle, the operations will usually not be atomic

… yet perhaps the processor supplies atomic operations for the actual case.
 Many schedulers interrupt threads irrespective of shared data operations

… yet perhaps this scheduler is aware of the shared data.

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 242 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Sanity check

i++;

{in one thread}

if i > n {i=0;}

{in another thread}

Do we need to? – really?
int i; {declare globally to multiple threads}

Depending on the hardware and the compiler, it might be atomic, it might be not:
 Handling a 64-bit integer on a 8- or 16-bit controller will not be atomic

… yet perhaps it is an 8-bit integer.
 Unaligned manipulations on the main memory will usually not be atomic

… yet perhaps it is a aligned.
 Broken down to a load-operate-store cycle, the operations will usually not be atomic

… yet perhaps the processor supplies atomic operations for the actual case.
 Many schedulers interrupt threads irrespective of shared data operations

… yet perhaps this scheduler is aware of the shared data.

be

s i
c

erh
a load-operate-store cycle, the operations will usually not

yet perhaps the processor supplies atomic operations

hardware and the compiler, it might be atomihardware and the compiler, it might be atomic, it might b
it integer on a 8- or 16-bit controller will not be atomic

… yet perhaps
pulations on the main memory will usually not be atomic

… yet pe
a load-operate-store cycle, the operations will usually no

Assuming that all ‘perhapses’ apply:

How to expand this code?

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 243 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Sanity check

i++;

{in one thread}

if i > n {i=0;}

{in another thread}

Do we need to? – really?
int i; {declare globally to multiple threads}

 The chances that such programming errors turn out are usually small and some im-
plicit by chance synchronization in the rest of the system might prevent them at all.

(Many effects stemming from asynchronous memory accesses are interpreted
as (hardware) ‘glitches’, since they are usually rare, yet often disastrous.)

 On assembler level: synchronization by employing knowledge about the atomicity of
CPU-operations and interrupt structures is nevertheless possible and done frequently.

In anything higher than assembler level on small, predictable µ-controllers:

 Measures for synchronization are required!

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 244 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Towards synchronization

Condition synchronization by fl ags

Assumption: word-access atomicity:

i.e. assigning two values (not wider than the size of a ‘word’)
to an aligned memory cell concurrently:

x := 0 | x := 500

will result in either x = 0 or x = 500 – and no other value is ever observable

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 245 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Towards synchronization

Condition synchronization by fl ags

Assuming further that there is a shared memory area between two processes:

• A set of processes agree on a (word-size) atomic variable operating
as a fl ag to indicate synchronization conditions:

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 246 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Towards synchronization

process P1;
 statement X;

 repeat until Flag;

 statement Y;
end P1;

process P2;
 statement A;

 Flag := true;

 statement B;
end P2;

Condition synchronization by fl ags

var Flag : boolean := false;

Sequence of operations: A B< ; YX A <;6 @ ; ,X Y B;6 @

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 247 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Towards synchronization

Condition synchronization by fl ags

Assuming further that there is a shared memory area between two processes:

• A set of processes agree on a (word-size) atomic variable operating
as a fl ag to indicate synchronization conditions:

Memory fl ag method is ok for simple condition synchronization, but …

 … is not suitable for general mutual exclusion in critical sections!

 … busy-waiting is required to poll the synchronization condition!

 More powerful synchronization operations
are required for critical sections

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 248 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Basic synchronization

by Semaphores
Basic defi nition (Dijkstra 1968)

Assuming the following three conditions on a shared memory cell between processes:

• a set of processes agree on a variable S operating as a
fl ag to indicate synchronization conditions

• an atomic operation P on S — for ‘passeren’ (Dutch for ‘pass’):

P(S): [as soon as S > 0 then S := S - 1] this is a potentially delaying operation

aka: ‘Wait’, ‘Suspend_Until_True’, ‘sem_wait’, …

• an atomic operation V on S — for ‘vrygeven’ (Dutch for ‘to release’):

V(S): [S := S + 1]

aka ‘Signal’, ‘Set-True’, ‘sem_post’, …

 then the variable S is called a Semaphore.

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 249 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Towards synchronization

process P1;
 statement X;

 wait (sync)

 statement Y;
end P1;

process P2;
 statement A;

 signal (sync);

 statement B;
end P2;

Condition synchronization by semaphores

var sync : semaphore := 0;

Sequence of operations: A B< ; YX A <;6 @ ; ,X Y B;6 @

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 250 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Towards synchronization

process P1;
 statement X;

 wait (mutex);
 statement Y;
 signal (mutex);

 statement Z;
end P1;

process P2;
 statement A;

 wait (mutex);
 statement B;
 signal (mutex);

 statement C;
end P2;

Mutual exclusion by semaphores

var mutex : semaphore := 1;

Sequence of operations:
A B C< < ; Y ZX < < ; , , ,X Z A B C;6 @; , , ,A X Y ZC ;6 @; B YJ ;6 @

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 251 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Towards synchronization

Semaphores in Ada

package Ada.Synchronous_Task_Control is

 type Suspension_Object is limited private;

 procedure Set_True (S : in out Suspension_Object);
 procedure Set_False (S : in out Suspension_Object);
 function Current_State (S : Suspension_Object) return Boolean;
 procedure Suspend_Until_True (S : in out Suspension_Object);

private
 … ------ not specified by the language
end Ada.Synchronous_Task_Control;

only one task can be blocked at Suspend_Until_True!
(Program_Error will be raised with a second task trying to suspend itself)

 no queues! minimal run-time overhead

 This is "queueless" and can translate

into a single machine instruction.

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 252 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Towards synchronization

Semaphores in Ada

package Ada.Synchronous_Task_Control is

 type Suspension_Object is limited private;

 procedure Set_True (S : in out Suspension_Object);
 procedure Set_False (S : in out Suspension_Object);
 function Current_State (S : Suspension_Object) return Boolean;
 procedure Suspend_Until_True (S : in out Suspension_Object);

private
 … ------ not specified by the language
end Ada.Synchronous_Task_Control;

only one task can be blocked at Suspend_Until_True!
(Program_Error will be raised with a second task trying to suspend itself)

 no queues! minimal run-time overhead

chronous_Task_Control is

Obj t i li it d private;

out Suspension_Object);
out Suspension_Object);
 Suspension_Object) rreeeeeetttttuuurrrnnnnn Boolean;

pend_Until_True (S : in ouuttt Suspension_Object);

specified by the language
nous_Task_Control;

be blocked at Suspend_Until_True!
l be raised with a second task trying to suspend itself)

lang

Obje
Objec

oole

ous_T
d

Task Co
d bbyyyyy

ouuss____TTTTTTTTaaaaaaassssssskkkkkk oooooonnnntt

bbbbbllloo

geee llll gggggggguuuuuaaa
oooollll;;;;

SSSSSSSuu
 SSuuuuuuus

ggeeeeeee

nnnnnnssss
ect
t

je___OOOOObbbbbjjjjjjjeeeeecccccctt
nn______OOOOOOObbjjjjjeeeeeccccccctt

);t))));;;;;;
))) rrrreeee uuurrr BooleBBBBBooooooo eeeeaaaaann;;

enenn
eennon Cur

pppppprrrrrooooccceeddddddure Susp

rrrrrrrrrriiiv

nn o
in o

rent_State (S :
pend Until True (S : in o

 type Suspensioon_Object is limited

 procedure Set_
 procedure Set_
 function Curr

bject is limited pr

_True (S : in
_False (S : in
rent St

 for special cases only … otherwise:

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 253 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Towards synchronization

Malicious use of "queueless semaphores"
with Ada.Synchronous_Task_Control; use Ada.Synchronous_Task_Control;
X : Suspension_Object;

task B;
task body B is
begin
 …
 Suspend_Until_True (X);
 …
 …
end B;

task A;
task body A is
begin
 …
 Suspend_Until_True (X);
 …
 …
end A;

 Could raise a Program_Error as multiple tasks potentially suspend on the same semaphore
(occurs only with high effi ciency semaphores which do not provide process queues)

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 254 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Towards synchronization

Malicious use of "queueless semaphores"
with Ada.Synchronous_Task_Control; use Ada.Synchronous_Task_Control;
X, Y : Suspension_Object;

task B;
task body B is
begin
 …
 Suspend_Until_True (Y);
 Set_True (X);
 …
end B;

task A;
task body A is
begin
 …
 Suspend_Until_True (X);
 Set_True (Y);
 …
end A;

 Will result in a deadlock (assuming no other Set_True calls)

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 255 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Towards synchronization

Malicious use of "queueless semaphores"
with Ada.Synchronous_Task_Control; use Ada.Synchronous_Task_Control;
X, Y : Suspension_Object;

task B;
task body B is
begin
 …
 Suspend_Until_True (Y);
 Suspend_Until_True (X);
 …
end B;

task A;
task body A is
begin
 …
 Suspend_Until_True (X);
 Suspend_Until_True (Y);
 …
end A;

 Will potentially result in a deadlock (with general semaphores)
or a Program_Error in Ada.

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 256 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Towards synchronization

Semaphores in POSIX

int sem_init (sem_t *sem_location, int pshared, unsigned int value);
int sem_destroy (sem_t *sem_location);

int sem_wait (sem_t *sem_location);
int sem_trywait (sem_t *sem_location);
int sem_timedwait (sem_t *sem_location, const struct timespec *abstime);

int sem_post (sem_t *sem_location);

int sem_getvalue (sem_t *sem_location, int *value);

pshared is actually a Boolean indicating whether the

semaphore is to be shared between processes

are

tional University page 256 ofy 700 (chapter 3: “Communication & Synchronization” u0

*value indicates the number of waiting processes as a

negative integer in case the semaphore value is zero

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 257 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Towards synchronization

Semaphores in POSIX
sem_t mutex, cond[2];
typedef emun {low, high} priority_t;
int waiting;
int busy;

void allocate (priority_t P)
{
 sem_wait (&mutex);
 if (busy) {
 sem_post (&mutex);
 sem_wait (&cond[P]);
 }
 busy = 1;
 sem_post (&mutex);
}

void deallocate (priority_t P)
{
 sem_wait (&mutex);
 busy = 0;
 sem_getvalue (&cond[high], &waiting);
 if (waiting < 0) {
 sem_post (&cond[high]);
 }
 else {
 sem_getvalue (&cond[low], &waiting);
 if (waiting < 0) {
 sem_post (&cond[low]);
 }
 else {
 sem_post (&mutex);
} } }

Deadlock?

Livelock?

Mutual exclusion?

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 258 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Towards synchronization

Semaphores in Java (since 2004)

Semaphore (int permits, boolean fair)

 void acquire ()
 void acquire (int permits)
 void acquireUninterruptibly (int permits)
 boolean tryAcquire ()
 boolean tryAcquire (int permits, long timeout, TimeUnit unit)

 int availablePermits ()
protected void reducePermits (int reduction)
 int drainPermits ()

 void release ()
 void release (int permits)

protected Collection <Thread> getQueuedThreads ()
 int getQueueLength ()
 boolean hasQueuedThreads ()
 boolean isFair ()
 String toString ()

wait

signal

check and manipulate

administration

}}
ong t
}
ngng
}
ngng

}}

}}

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 259 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Towards synchronization

Review of semaphores
• Semaphores are not bound to any resource or method or region

 Compiler has no idea what is supposed to be protected by a semaphore.

• Semaphores are scattered all over the code

 Hard to read and highly error-prone.

 Adding or deleting a single semaphore operation usually stalls a whole system.

 Semaphores are generally considered
inadequate for non-trivial systems.

(all concurrent languages and environments offer
effi cient and higher-abstraction synchronization methods)

 Special (usually close-to-hardware) applications exist.

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 260 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Distributed synchronization

Conditional Critical Regions

Basic idea:

• Critical regions are a set of associated code sections in different processes,
which are guaranteed to be executed in mutual exclusion:

• Shared data structures are grouped in named regions
and are tagged as being private resources.

• Processes are prohibited from entering a critical region,
when another process is active in any associated critical region.

• Condition synchronisation is provided by guards:

• When a process wishes to enter a critical region it evaluates the guard (under mu-
tual exclusion). If the guard evaluates to false, the process is suspended / delayed.

• Generally, no access order can be assumed potential livelocks

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 261 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Distributed synchronization

process producer;

 loop

 region critial_buffer_region
 when buffer.size < N do
 ------ place in buffer etc.
 end region;

 end loop;
end producer;

process consumer;

 loop

 region critial_buffer_region
 when buffer.size > 0 do
 ------ take from buffer etc.
 end region;

 end loop;
end consumer;

Conditional Critical Regions

buffer : buffer_t;
resource critial_buffer_region : buffer;

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 262 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Distributed synchronization

Review of Conditional Critical Regions

• Well formed synchronization blocks and synchronization conditions.

• Code, data and synchronization primitives are associated (known to compiler and runtime).

• All guards need to be re-evaluated, when any conditional critical region is left:

 all involved processes are activated to test their guards

 there is no order in the re-evaluation phase potential livelocks

• Condition synchronisation inside the critical code sections
requires to leave and re-enter a critical region.

• As with semaphores the conditional critical regions are distributed all over the code.

 on a larger scale: same problems as with semaphores.

(The language Edison (Per Brinch Hansen, 1981) uses conditional critical regions for synchroniz-
ation in a multiprocessor environment (each process is associated with exactly one processor).)

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 263 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Monitors
(Modula-1, Mesa — Dijkstra, Hoare)

Basic idea:

• Collect all operations and data-structures shared in critical regions in one place, the monitor.

• Formulate all operations as procedures or functions.

• Prohibit access to data-structures, other than by the monitor-procedures and functions.

• Assure mutual exclusion of all monitor-procedures and functions.

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 264 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Monitors

monitor buffer;

 export append, take;

 var (* declare protected vars *)

 procedure append (I : integer);
 …

 procedure take (var I : integer);
 …
begin
 (* initialisation *)
end;

How to realize

conditional synchronization?

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 265 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Monitors with condition synchronization
(Hoare ‘74)

Hoare-monitors:

• Condition variables are implemented by semaphores (Wait and Signal).

• Queues for tasks suspended on condition variables are realized.

• A suspended task releases its lock on the monitor, enabling another task to enter.

 More effi cient evaluation of the guards:
the task leaving the monitor can evaluate all guards and the right tasks can be activated.

 Blocked tasks may be ordered and livelocks prevented.

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 266 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Monitors with condition synchronization
monitor buffer;

 export append, take;

 var BUF : array […] of integer;
 top, base : 0..size-1;
 NumberInBuffer : integer;
 spaceavailable, itemavailable : condition;

 procedure append (I : integer);
 begin
 if NumberInBuffer = size then
 wait (spaceavailable);
 end if;
 BUF [top] := I;
 NumberInBuffer := NumberInBuffer + 1;
 top := (top + 1) mod size;
 signal (itemavailable)
 end append; …

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 267 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Monitors with condition synchronization
…
 procedure take (var I : integer);
 begin
 if NumberInBuffer = 0 then
 wait (itemavailable);
 end if;
 I := BUF[base];
 base := (base+1) mod size;
 NumberInBuffer := NumberInBuffer-1;
 signal (spaceavailable);
 end take;
begin (* initialisation *)
 NumberInBuffer := 0;
 top := 0;
 base := 0
end;

The signalling and the

waiting process are both

active in the monitor!

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 268 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Monitors with condition synchronization

Suggestions to overcome the multiple-tasks-in-monitor-problem:

• A signal is allowed only as the last action of a process before it leaves the monitor.

• A signal operation has the side-effect of executing a return statement.

• Hoare, Modula-1, POSIX:
a signal operation which unblocks another process has the side-effect of blocking the cur-
rent process; this process will only execute again once the monitor is unlocked again.

• A signal operation which unblocks a process does not block the caller,
but the unblocked process must re-gain access to the monitor.

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 269 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Monitors in Modula-1

• procedure wait (s, r):
delays the caller until condition variable s is true (r is the rank (or ‘priority’) of the caller).

• procedure send (s):
If a process is waiting for the condition variable s, then the process at the top of
the queue of the highest fi lled rank is activated (and the caller suspended).

• function awaited (s) return integer:
check for waiting processes on s.

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 270 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Monitors in Modula-1
INTERFACE MODULE resource_control;

 DEFINE allocate, deallocate;

 VAR busy : BOOLEAN; free : SIGNAL;

 PROCEDURE allocate;
 BEGIN
 IF busy THEN WAIT (free) END;
 busy := TRUE;
 END;

 PROCEDURE deallocate;
 BEGIN
 busy := FALSE;
 SEND (free); ------ or: IF AWAITED (free) THEN SEND (free);
 END;

BEGIN
 busy := false;
END.

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 271 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Monitors in POSIX (‘C’)
(types and creation)

Synchronization between POSIX-threads:

typedef … pthread_mutex_t;
typedef … pthread_mutexattr_t;
typedef … pthread_cond_t;
typedef … pthread_condattr_t;

int pthread_mutex_init (pthread_mutex_t *mutex,
 const pthread_mutexattr_t *attr);
int pthread_mutex_destroy (pthread_mutex_t *mutex);

int pthread_cond_init (pthread_cond_t *cond,
 const pthread_condattr_t *attr);
int pthread_cond_destroy (pthread_cond_t *cond);
…

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 272 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Monitors in POSIX (‘C’)
(types and creation)

Synchronization between POSIX-threads:

typedef … pthread_mutex_t;
typedef … pthread_mutexattr_t;
typedef … pthread_cond_t;
typedef … pthread_condattr_t;

int pthread_mutex_init (pthread_mutex_t *mutex,
 const pthread_mutexattr_t *attr);
int pthread_mutex_destroy (pthread_mutex_t *mutex);

int pthread_cond_init (pthread_cond_t *cond,
 const pthread_condattr_t *attr);
int pthread_cond_destroy (pthread_cond_t *cond);
…

ad
ad
ad

ad
ad
ad

)

d
d
d

d
d
d

d_mutex_t *mutex,
d_mutexattr_t *attr);
d_mutex_t *mutex);

d_cond_t *cond,
d_condattr_t *attr);
d_cond_t *cond);

d
d
d

d
d
d

Attributes include:

• semantics for trying to lock a mutex which

is locked already by the same thread

• sharing of mutexes and

condition variables between processes

• priority ceiling

• clock used for timeouts

• …

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 273 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Monitors in POSIX (‘C’)
(types and creation)

Synchronization between POSIX-threads:

typedef … pthread_mutex_t;
typedef … pthread_mutexattr_t;
typedef … pthread_cond_t;
typedef … pthread_condattr_t;

int pthread_mutex_init (pthread_mutex_t *mutex,
 const pthread_mutexattr_t *attr);
int pthread_mutex_destroy (pthread_mutex_t *mutex);

int pthread_cond_init (pthread_cond_t *cond,
 const pthread_condattr_t *attr);
int pthread_cond_destroy (pthread_cond_t *cond);
…

Undefi ned while locked

r_t;

 (pthre
 cccccooooonnst pthre
(pthre

2 3 f 00 (h 3 “C i i & S0

Undefi ned while threads are waiting

(

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 274 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Monitors in POSIX (‘C’)
(operators)

…

int pthread_mutex_lock (pthread_mutex_t *mutex);
int pthread_mutex_trylock (pthread_mutex_t *mutex);
int pthread_mutex_timedlock (pthread_mutex_t *mutex,
 const struct timespec *abstime);

int pthread_mutex_unlock (pthread_mutex_t *mutex);

int pthread_cond_wait (pthread_cond_t *cond,
 pthread_mutex_t *mutex);
int pthread_cond_timedwait (pthread_cond_t *cond,
 pthread_mutex_t *mutex,
 const struct timespec *abstime);

int pthread_cond_signal (pthread_cond_t *cond);
int pthread_cond_broadcast (pthread_cond_t *cond);

 pthread_cond_t *cond,
h

,

 pthread_cond_t *cond,
 pthread_mutex_t *mutex);

pthread cond t *cond

unblocks ‘at least one’ thread

(

 ccons

ead cond t *cond);

,
read_mutex_t *mutex,
uct timespec *abstime);

,
dr

u

,

unblocks all threads

(pthre
(pthre
(re

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 275 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Monitors in POSIX (‘C’)
(operators)

…

int pthread_mutex_lock (pthread_mutex_t *mutex);
int pthread_mutex_trylock (pthread_mutex_t *mutex);
int pthread_mutex_timedlock (pthread_mutex_t *mutex,
 const struct timespec *abstime);

int pthread_mutex_unlock (pthread_mutex_t *mutex);

int pthread_cond_wait (pthread_cond_t *cond,
 pthread_mutex_t *mutex);
int pthread_cond_timedwait (pthread_cond_t *cond,
 pthread_mutex_t *mutex,
 const struct timespec *abstime);

int pthread_cond_signal (pthread_cond_t *cond);
int pthread_cond_broadcast (pthread_cond_t *cond);

*mutex,

*abstime);*abstime);*abstime);

*mutex);

*cond,
*mutex);
*cond,

*abstime);

undefi ned

if called ‘out of order’

i.e. mutex is not locked*
*

 pthread_mutex_t
(pthread_cond_t

 pthre
(

* (pthread_mutex_t

* (pthread_cond_t **_cond_t (pthread_cond_td_cond_t

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 276 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Monitors in POSIX (‘C’)
(operators)

…

int pthread_mutex_lock (pthread_mutex_t *mutex);
int pthread_mutex_trylock (pthread_mutex_t *mutex);
int pthread_mutex_timedlock (pthread_mutex_t *mutex,
 const struct timespec *abstime);

int pthread_mutex_unlock (pthread_mutex_t *mutex);

int pthread_cond_wait (pthread_cond_t *cond,
 pthread_mutex_t *mutex);
int pthread_cond_timedwait (pthread_cond_t *cond,
 pthread_mutex_t *mutex,
 const struct timespec *abstime);

int pthread_cond_signal (pthread_cond_t *cond);
int pthread_cond_broadcast (pthread_cond_t *cond);

can be called

• any time

• anywhere

• multiple times

 (
 (
k

(pthread_mutex_t *mutex);
pthread mutex t *mutex);

(
p

(pthread mutex t *mutex);

(pthr
(pthread_

(

pthread_mutex_t *mutex);
mutex t *mutex

pthre
d m

(
pthr

(pthread mutex t *mutex);

(pthread_mutex_t *mutex,
const struct timespec *abstime);

(pthread mutex t *mutex);

read_mutex
pec *abst

mutex
 *absti

hread_mu
spec *abst

 pthread_mutex_t *mutex);
t (

 ((p);
(pthread cond t *cond);

;
 *cond,

d_mutex_t *mutex,
 struct timespec *abstime);

(pthread_cond_t *cond);

 pthread_mutex_t *mutex);
(pthread_cond_t *con
 pthread_mute
const stru

);
 *cond

ad_mutex
t stru

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 277 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

#define BUFF_SIZE 10
typedef struct { pthread_mutex_t mutex;
 pthread_cond_t buffer_not_full;
 pthread_cond_t buffer_not_empty;
 int count, first, last;
 int buf [BUFF_SIZE];
 } buffer;

int append (int item, buffer *B) {
 PTHREAD_MUTEX_LOCK (&B->mutex);
 while (B->count == BUFF_SIZE) {
 PTHREAD_COND_WAIT (
 &B->buffer_not_full,
 &B->mutex);
 }
 PTHREAD_MUTEX_UNLOCK (&B->mutex);
 PTHREAD_COND_SIGNAL (
 &B->buffer_not_empty);
 return 0;
}

int take (int *item, buffer *B) {
 PTHREAD_MUTEX_LOCK (&B->mutex);
 while (B->count == 0) {
 PTHREAD_COND_WAIT (
 &B->buffer_not_empty,
 &B->mutex);
 }
 PTHREAD_MUTEX_UNLOCK (&B->mutex);
 PTHREAD_COND_SIGNAL (
 &B->buffer_not_full);
 return 0;
}

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 278 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

#define BUFF_SIZE 10
typedef struct { pthread_mutex_t mutex;
 pthread_cond_t buffer_not_full;
 pthread_cond_t buffer_not_empty;
 int count, first, last;
 int buf [BUFF_SIZE];
 } buffer;

int append (int item, buffer *B) {
 PTHREAD_MUTEX_LOCK (&B->mutex);
 while (B->count == BUFF_SIZE) {
 PTHREAD_COND_WAIT (
 &B->buffer_not_full,
 &B->mutex);
 }
 PTHREAD_MUTEX_UNLOCK (&B->mutex);
 PTHREAD_COND_SIGNAL (
 &B->buffer_not_empty);
 return 0;
}

int take (int *item, buffer *B) {
 PTHREAD_MUTEX_LOCK (&B->mutex);
 while (B->count == 0) {
 PTHREAD_COND_WAIT (
 &B->buffer_not_empty,
 &B->mutex);
 }
 PTHREAD_MUTEX_UNLOCK (&B->mutex);
 PTHREAD_COND_SIGNAL (
 &B->buffer_not_full);
 return 0;
}

ot emptot emptot_empty;ot_empty;

need to be called

with a locked mutex
r;

buffer *B) {
&B->mutex);
UFF_SIZE) {
(

mp

}

while (B->count == 0) {

m

}

while (B->count == 0) { while (B->count == 0) {
 PTHREAD_COND_WAIT (
 &B->buffer_not_em
 &B->mutex);
}

while (B->count == 0) {

 &B->buffer_not_em

}

better to be called

after unlocking all mutexes

(as it is itself potentially blocking)B->mutex);

K (&B->mutex);
(

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 279 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

static void Reader()

 { try {
 Monitor.Enter (data_to_protect);
 Monitor.Wait (data_to_protect);
 … read out protected data
 }
 finally {
 Monitor.Exit (data_to_protect);
 }
 }

static void Writer()

 { try {
 Monitor.Enter (data_to_protect);
 … write protected data
 Monitor.Pulse (data_to_protect);
 }
 finally {
 Monitor.Exit (data_to_protect);
 }
 }

Monitors in C#
using System;
using System.Threading;

static long data_to_protect = 0;

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 280 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

void Reader()

 { try {
 Monitor::Enter (data_to_protect);
 Monitor::Wait (data_to_protect);
 … read out protected data
 }
 finally {
 Monitor::Exit (data_to_protect);
 }
 };

void Writer()

 { try {

 Monitor::Enter (data_to_protect);
 … write protected data
 Monitor::Pulse (data_to_protect);
 }
 finally {
 Monitor.Exit (data_to_protect);
 }
 };

Monitors in Visual C++
using namespace System;
using namespace System::Threading

private: integer data_to_protect;

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 281 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Public Sub Reader

 Try
 Monitor.Enter (data_to_protect)
 Monitor.Wait (data_to_protect)
 … read out protected data
 Finally
 Monitor.Exit (data_to_protect)
 End Try
End Sub

Public Sub Writer

 Try

 Monitor.Enter (data_to_protect)
 … write protected data
 Monitor.Pulse (data_to_protect)
 Finally
 Monitor.Exit (data_to_protect)
 End Try
End Sub

Monitors in Visual Basic
Imports System
Imports System.Threading

Private Dim data_to_protect As Integer = 0

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 282 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

public void reader
 throws InterruptedException {
 mon.enter();
 Condvar.await();
 … read out protected data
 mon.leave();
 }

public void writer

 throws InterruptedException {

 mon.enter();
 … write protected data
 Condvar.signal();
 mon.leave();
 }

Monitors in Java
Monitor mon = new Monitor();

Monitor.Condition Condvar = mon.new Condition();

University page 282 of y 700 (chapter 30

… the Java library monitor

connects data or condition

variables to the monitor

by convention only!

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 283 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Monitors in Java
(by means of language primitives)

Java provides two mechanisms to construct a monitors-like structure:

• Synchronized methods and code blocks:
all methods and code blocks which are using the synchronized
tag are mutually exclusive with respect to the addressed class.

• Notifi cation methods:
wait, notify, and notifyAll can be used only in
synchronized regions and are waking any or all threads,
which are waiting in the same synchronized object.

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 284 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Monitors in Java
(by means of language primitives)

Considerations:

1. Synchronized methods and code blocks:
• In order to implement a monitor all methods in an object need to be synchronized.

 any other standard method can break a Java monitor and enter at any time.

• Methods outside the monitor-object can synchronize at this object.

 it is impossible to analyse a Java monitor locally, since lock ac-
cesses can exist all over the system.

• Static data is shared between all objects of a class.

 access to static data need to be synchronized with all objects of a class.

Synchronize either in static synchronized blocks: synchronized (this.getClass()) {…}
or in static methods: public synchronized static <method> {…}

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 285 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Monitors in Java
(by means of language primitives)

Considerations:

2. Notifi cation methods: wait, notify, and notifyAll
• wait suspends the thread and releases the local lock only

 nested wait-calls will keep all enclosing locks.

• notify and notifyAll do not release the lock!

 methods, which are activated via notifi cation need to wait for lock-access.

• Java does not require any specifi c release order (like a queue) for wait-suspended threads

 livelocks are not prevented at this level (in opposition to RT-Java).

• There are no explicit conditional variables associated with the monitor or data.

 notifi ed threads need to wait for the lock to be released
and to re-evaluate its entry condition.

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 286 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Monitors in Java
(by means of language primitives)

Standard monitor solution:

• declare the monitored data-structures private to the monitor object (non-static).

• introduce a class ConditionVariable:

 public class ConditionVariable {
 public boolean wantToSleep = false;
 }

• introduce synchronization-scopes in monitor-methods:

 synchronize on the adequate conditional variables fi rst and

 synchronize on the adequate monitor-object second.

• make sure that all methods in the monitor are implementing the correct synchronizations.

• make sure that no other method in the whole system is
synchronizing on or interfering with this monitor-object in any way by convention.

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 287 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Monitors in Java
(multiple-readers-one-writer-example: usage of external conditional variables)

public class ReadersWriters {

 private int readers = 0;
 private int waitingReaders = 0;
 private int waitingWriters = 0;
 private boolean writing = false;

 ConditionVariable OkToRead = new ConditionVariable ();
 ConditionVariable OkToWrite = new ConditionVariable ();
…

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 288 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Monitors in Java
(multiple-readers-one-writer-example: usage of external conditional variables)

… public void StartWrite () throws InterruptedException {

 synchronized (OkToWrite) {

 synchronized (this) {

 if (writing | readers > 0) {
 waitingWriters++;
 OkToWrite.wantToSleep = true;
 } else {
 writing = true;
 OkToWrite.wantToSleep = false;
 }
 }

 if (OkToWrite.wantToSleep) OkToWrite.wait ();
 }
 } …

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 289 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Monitors in Java
(multiple-readers-one-writer-example: usage of external conditional variables)

… public void StopWrite () {

 synchronized (OkToRead) {

 synchronized (OkToWrite) {

 synchronized (this) {

 if (waitingWriters > 0) {
 waitingWriters--;
 OkToWrite.notify (); // wakeup one writer
 } else {
 writing = false;
 OkToRead.notifyAll (); // wakeup all readers
 readers = waitingReaders;
 waitingReaders = 0;
 }
 } } } } …

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 290 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Monitors in Java
(multiple-readers-one-writer-example: usage of external conditional variables)

… public void StartRead () throws InterruptedException {

 synchronized (OkToRead) {

 synchronized (this) {

 if (writing | waitingWriters > 0) {
 waitingReaders++;
 OkToRead.wantToSleep = true;
 } else {
 readers++;
 OkToRead.wantToSleep = false;
 }
 }

 if (OkToRead.wantToSleep) OkToRead.wait ();
 }
 } …

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 291 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Monitors in Java
(multiple-readers-one-writer-example: usage of external conditional variables)

… public void StopRead () {

 synchronized (OkToWrite) {

 synchronized (this) {

 readers--;
 if (readers == 0 & waitingWriters > 0) {
 waitingWriters--;
 OkToWrite.notify ();
 }
 }
 }
 }
}

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 292 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Object-orientation and synchronization
Since mutual exclusion, notifi cation, and condition synchronization schemes need to be de-
signed and analyzed considering the implementation of all involved methods and guards:

 New methods cannot be added without re-evaluating the class!

Re-usage concepts of object-oriented programming do not translate to
synchronized classes (e.g. monitors) and thus need to be considered carefully.

 The parent class might need to be adapted
in order to suit the global synchronization scheme.

 Inheritance anomaly (Matsuoka & Yonezawa ‘93)

Methods to design and analyse expandible synchronized systems exist, yet they
are complex and not offered in any concurrent programming language.
Alternatively, inheritance can be banned in the context of synchronization (e.g. Ada).

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 293 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Monitors in Java

Per Brinch Hansen (1938-2007) in 1999:

Java’s most serious mistake was the decision to use the sequential
part of the language to implement the run-time support for its paral-
lel features. It strikes me as absurd to write a compiler for the sequen-
tial language concepts only and then attempt to skip the much more
diffi cult task of implementing a secure parallel notation. This wish-
ful thinking is part of Java’s unfortunate inheritance of the insecure
C language and its primitive, error-prone library of threads methods.

"Per Brinch Hansen is one of a handful of computer pioneers who was responsible for advan-
cing both operating systems development and concurrent programming from ad hoc tech-
niques to systematic engineering disciplines." (from his IEEE 2002 Computer Pioneer Award)

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 294 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Monitors in POSIX, Visual C++, C#, Visual Basic & Java
 All provide lower-level primitives for the construction of monitors

 All rely on convention instead of compiler checks

 Visual C++, C+ & Visual Basic offer
data-encapsulation and connection to the monitor

 Java offers data-encapsulation (yet not with respect to a monitor)

 POSIX (being a collection of library calls)
does not provide any data-encapsulation by itself.

 Extreme care must be taken when employing
object-oriented programming and monitors

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 295 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Nested monitor calls
Assuming a thread in a monitor is calling an operation in
another monitor and is suspended at a conditional variable there:

 the called monitor is aware of the suspension and allows other threads to enter.

 the calling monitor is possibly not aware of the suspension and keeps its lock!

 the unjustifi ed locked calling monitor reduces the
system performance and leads to potential deadlocks.

Suggestions to solve this situation:

• Maintain the lock anyway: e.g. POSIX, Java

• Prohibit nested monitor calls: e.g. Modula-1

• Provide constructs which specify the release of a monitor lock for remote calls, e.g. Ada

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 296 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Criticism of monitors

• Mutual exclusion is solved elegantly and safely.

• Conditional synchronization is on the level of semaphores still
 all criticism about semaphores applies inside the monitors

 Mixture of low-level and high-level synchronization constructs.

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 297 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Synchronization by protected objects
Combine

the encapsulation feature of monitors
with

the coordinated entries of conditional critical regions
to:

 Protected objects

• All controlled data and operations are encapsulated.

• Operations are mutual exclusive (with exceptions for read-only operations).

• Guards (predicates) are syntactically attached to entries.

• No protected data is accessible (other than by the defi ned operations).

• Fairness inside operations is guaranteed by queuing (according to their priorities).

• Fairness across all operations is guaranteed by the "internal progress fi rst" rule.

• Re-blocking provided by re-queuing to entries (no internal condition variables).

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 298 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Synchronization by protected objects
(Simultaneous read-access)

Some read-only operations do not need to be mutually exclusive:

protected type Shared_Data (Initial : Data_Item) is

 function Read return Data_Item;
 procedure Write (New_Value : Data_Item);

private
 The_Data : Data_Item := Initial;
end Shared_Data_Item;

• protected functions can have ‘in’ parameters only
and are not allowed to alter the private data (enforced by the compiler).

 protected functions allow simultaneous access (but mutual exclusive with other operations).

… there is no defi ned priority between functions and other protected operations in Ada.

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 299 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Synchronization by protected objects
(Condition synchronization: entries & barriers)

Condition synchronization is realized in the form of protected procedures
combined with boolean predicates (barriers): called entries in Ada:

Buffer_Size : constant Integer := 10;

type Index is mod Buffer_Size;
subtype Count is Natural range 0 .. Buffer_Size;
type Buffer_T is array (Index) of Data_Item;

protected type Bounded_Buffer is

 entry Get (Item : out Data_Item);
 entry Put (Item : Data_Item);

private
 First : Index := Index’First;
 Last : Index := Index’Last;
 Num : Count := 0;
 Buffer : Buffer_T;
end Bounded_Buffer;

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 300 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Synchronization by protected objects
(Condition synchronization: entries & barriers)

protected body Bounded_Buffer is

 entry Get (Item : out Data_Item) when Num > 0 is

 begin
 Item := Buffer (First);
 First := First + 1;
 Num := Num - 1;
 end Get;

 entry Put (Item : Data_Item) when Num < Buffer_Size is

 begin
 Last := Last + 1;
 Buffer (Last) := Item;
 Num := Num + 1;
 end Put;

end Bounded_Buffer;

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 301 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Synchronization by protected objects
(Withdrawing entry calls)

Buffer : Bounded_Buffer;

select
 Buffer.Put (Some_Data);

or
 delay 10.0;
 -- do something after 10 s.

end select;

select
 Buffer.Get (Some_Data);

else
 -- do something else

end select;

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 302 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Synchronization by protected objects
(Withdrawing entry calls)

Buffer : Bounded_Buffer;

select
 Buffer.Put (Some_Data);

or
 delay 10.0;
 -- do something after 10 s.

end select;

select
 Buffer.Get (Some_Data);

else
 -- do something else

end select;

select
 Buffer.Get (Some_Data);

then abort
 -- meanwhile try something else

end select;

select
 delay 10.0;

then abort
 Buffer.Put (Some_Data);
 -- try to enter for 10 s.

end select;

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 303 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Synchronization by protected objects
(Barrier evaluation)

Barrier in protected objects need to be evaluated only on two occasions:

• on creating a protected object,
all barrier are evaluated according to the initial values of the internal, protected data.

• on leaving a protected procedure or entry,
all potentially altered barriers are re-evaluated.

Alternatively an implementation may choose to evaluate barriers on those two occasions:

• on calling a protected entry,
the one associated barrier is evaluated.

• on leaving a protected procedure or entry,
all potentially altered barriers with tasks queued up on them are re-evaluated.

Barriers are not evaluated while inside a protected object or on leaving a protected function.

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 304 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Synchronization by protected objects
(Operations on entry queues)

The count attribute indicates the number of tasks waiting at a specifi c queue:

protected Block_Five is

 entry Proceed;

private
 Release : Boolean := False;

end Block_Five;

protected body Block_Five is

 entry Proceed
 when Proceed’count > 5
 or Release is

 begin
 Release := Proceed’count > 0;
 end Proceed;

end Block_Five;

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 305 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Synchronization by protected objects
(Operations on entry queues)

The count attribute indicates the number of tasks waiting at a specifi c queue:

protected type Broadcast is

 entry Receive (M: out Message);
 procedure Send (M: Message);

private
 New_Message : Message;
 Arrived : Boolean := False;

end Broadcast;

protected body Broadcast is

 entry Receive (M: out Message)
 when Arrived is

 begin
 M := New_Message
 Arrived := Receive’count > 0;
 end Proceed;

 procedure Send (M: Message) is

 begin
 New_Message := M;
 Arrived := Receive’count > 0;
 end Send;
end Broadcast;

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 306 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Synchronization by protected objects
(Entry families, requeue & private entries)

Additional, essential primitives for concurrent control fl ows:

• Entry families:
A protected entry declaration can contain
a discrete subtype selector, which can be evaluated by the barrier (other parameters
cannot be evaluated by barriers) and implements an array of protected entries.

• Requeue facility:
Protected operations can use ‘requeue’ to redirect tasks to other internal, external, or private
entries. The current protected operation is fi nished and the lock on the object is released.

‘Internal progress fi rst’-rule: external tasks are only considered for queuing
on barriers once no internally requeued task can be progressed any further!

• Private entries:
Protected entries which are not accessible from outside the protected
object, but can be employed as destinations for requeue operations.

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 307 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Synchronization by protected objects
(Entry families)

package Modes is

 type Mode_T is
 (Takeoff, Ascent, Cruising,
 Descent, Landing);

 protected Mode_Gate is
 procedure Set_Mode (Mode: Mode_T);
 entry Wait_For_Mode (Mode_T);

 private
 Current_Mode : Mode_Type := Takeoff;
 end Mode_Gate;

end Modes;

package body Modes is

 protected body Mode_Gate is
 procedure Set_Mode
 (Mode: Mode_T) is

 begin
 Current_Mode := Mode;
 end Set_Mode;

 entry Wait_For_Mode
 (for Mode in Mode_T)
 when Current_Mode = Mode is

 begin null;
 end Wait_For_Mode;

 end Mode_Gate;

end Modes;

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 308 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Synchronization by protected objects
(Entry families, requeue & private entries)

How to moderate the fl ow of incoming calls to a busy server farm?

 type Urgency is (urgent, not_so_urgent);
 type Server_Farm is (primary, secondary);

 protected Pre_Filter is
 entry Reception (U : Urgency);

 private
 entry Server (Server_Farm) (U : Urgency);
 end Pre_Filter;

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 309 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Synchronization by protected objects
(Entry families, requeue & private entries)

 protected body Pre_Filter is

 entry Reception (U : Urgency)
 when Server (primary)’count = 0 or else Server (secondary)’count = 0 is

 begin

 If U = urgent and then Server (primary)’count = 0 then
 requeue Server (primary);

 else
 requeue Server (secondary);
 end if;

 end Reception;

 entry Server (for S in Server_Farm) (U : Urgency) when true is

 begin null; -- might try something even more useful
 end Server;

 end Pre_Filter;

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 310 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Centralized synchronization

Synchronization by protected objects
(Restrictions for protected operations)

All code inside a protected procedure, function or entry is bound to non-blocking operations.

Thus the following operations are prohibited:

• entry call statements

• delay statements

• task creations or activations

• select statements

• accept statements

• … as well as calls to sub-programs which contain any of the above

 The requeue facility allows for a
potentially blocking operation,
and releases the current lock!

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 311 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Shared memory based synchronization

General

Criteria:

• Levels of abstraction

• Centralized versus distributed

• Support for automated (compiler based)
consistency and correctness validation

• Error sensitivity

• Predictability

• Effi ciency Semaphores
(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods

(mutual exclusion) Conditional
variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 312 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Shared memory based synchronization

POSIX

• All low level constructs available

• Connection with the actual data-struc-
tures by means of convention only

• Extremely error-prone

• Degree of non-determinism intro-
duced by the ‘release some’ semantic

• ‘C’ based

• Portable Semaphores
(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods

(mutual exclusion) Conditional
variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 313 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Shared memory based synchronization

Java

• Mutual exclusion available.

• General notifi cation feature (not
connected to other locks, hence
not a conditional variable)

• Universal object orientation makes
local analysis hard or even impossible

• Mixture of
high-level object oriented features and
low level concurrency primitives Semaphores

(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods

(mutual exclusion) Conditional
variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 314 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Shared memory based synchronization

C#, Visual C++, Visual Basic

• Mutual exclusion via
library calls (convention)

• Data is associated with the
locks to protect it

• Condition variables related to
the data protection locks

• Mixture of
high-level object oriented features and
low level concurrency primitives Semaphores

(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods

(mutual exclusion) Conditional
variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 315 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Shared memory based synchronization

C++14

• Mutual exclusion in scopes

• Data is not strictly associated
with the locks to protect it

• Condition variables related to
the mutual exclusion locks

• Set of essential primitives without combin-
ing them in a syntactically strict form (yet?)

Semaphores
(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods

(mutual exclusion) Conditional
variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 316 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Shared memory based synchronization

Rust

• Mutual exclusion in scopes

• Data is strictly associated
with locks to protect it

• Condition variables related to
the mutual exclusion locks

• Combined with the message passing
semantics already a power set of tools.

Semaphores
(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods

(mutual exclusion) Conditional
variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 317 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Shared memory based synchronization

Modula-1, Chill, Parallel Pascal, …

• Full implementation of the
Dijkstra / Hoare monitor concept

The term monitor appears in many other
concurrent languages, yet it is usually not
associated with an actual language primitive.

Semaphores
(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods

(mutual exclusion) Conditional
variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 318 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Shared memory based synchronization

Ada

• High-level synchronization support
which scales to large size projects.

• Full compiler support
incl. potential deadlock analysis

• Low-Level semaphores for very special cases

Ada has still
no mainstream competitor

in the fi eld of explicit concurrency.
(2015)

Semaphores
(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods

(mutual exclusion) Conditional
variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 319 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

High Performance Computing

Synchronization in large scale concurrency
High Performance Computing (HPC) emphasizes on
keeping as many CPU nodes busy as possible:

 Avoid contention on sparse resources.

 Data is assigned to individual processes rather than processes synchronizing on data.

 Data integrity is achieved by keeping the CPU nodes in approximate “lock-step”,
i.e. there is a need to re-sync concurrent entities.

Traditionally this has been implemented using the
Message Passing Interface (MPI) while implementing separate address spaces.

 Current approaches employ partitioned address spaces,
i.e. memory spaces can overlap and be re-assigned. X10, Chapel, Fortress

 Not all algorithms break down into independent computation slices and so there is
a need for memory integrity mechanisms in shared/partitioned address spaces.

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 320 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Current developments

Atomic operations in X10
X10 offers only atomic blocks in unconditional and conditional form.

• Unconditional atomic blocks are guaranteed to be non-blocking,
which this means that they cannot be nested, or need to be implemented using roll-backs.

• Conditional atomic blocks can also be used as a pure notifi cation system
(similar to the Java notify method)

• Parallel statements (incl. parallel, i.e. unrolled ‘loops’)

• Shared variables (and their access mechanisms) are currently not defi ned

• The programmer does not specify the scope of the locks (atomic blocks)
but they are managed by the compiler/runtime environment.

 Code analysis algorithms are required in order to provide effi ciently,
otherwise the runtime environment needs to associate every atomic block with a global lock.

X10 is currently still under development and the atomic block semantic is likely to be
amended while the current semantic is implemented in placeholder form only.

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 321 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Current developments

Synchronization in Chapel
Chapel offers a variety of concurrent primitives:

• Parallel operations on data (e.g. concurrent array operations)

• Parallel statements (incl. parallel, i.e. unrolled ‘loops’)

• Parallelism can also be explicitly limited by serializing statements

• Atomic blocks for the purpose to construct atomic transactions

• Memory integrity needs to be programmed by means of synchronization statements
(waiting for one or multiple control fl ows to complete)
and/or atomic blocks

Most of the Chapel semantic is still forthcoming … so there is still hope for a
stronger shared memory synchronization / memory integrity construct.

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 322 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Synchronization

Message-based synchronization

Synchronization model
• Asynchronous

• Synchronous

• Remote invocation

Addressing (name space)
• direct communication

• mail-box communication

Message structure
• arbitrary

• restricted to ‘basic’ types

• restricted to un-typed communications

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 323 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Message-based synchronization

Message protocols

Synchronous message
(sender waiting)

Delay the sender process until

• Receiver becomes available

• Receiver acknowledges reception

send

receive

asyncronous

syncronoustime time

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 324 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Message-based synchronization

Message protocols

Synchronous message
(receiver waiting)

Delay the receiver process until

• Sender becomes available

• Sender concludes transmission

send

receive

asyncronous

syncronoustime time

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 325 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Message-based synchronization

Message protocols

Asynchronous message

Neither the sender nor the receiver is blocked:

• Message is not transferred directly

• A buffer is required to store the messages

• Policy required for buffer sizes and
buffer overfl ow situations

send

receive

asyncronous

syncronoustime time

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 326 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Message-based synchronization

Message protocols

Asynchronous message
(simulated by synchronous messages)

Introducing an intermediate process:

• Intermediate needs to be ac-
cepting messages at all times.

• Intermediate also needs to send
out messages on request.

 While processes are blocked in the sense of
synchronous message passing, they are not ac-
tually delayed as the intermediate is always ready.

send

receive

time time

receive

send

time

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 327 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Message-based synchronization

Message protocols

Synchronous message
(simulated by asynchronous messages)

Introducing two asynchronous messages:

• Both processes voluntarily suspend them-
selves until the transaction is complete.

• As no immediate communication takes place,
the processes are never actually synchronized.

• The sender (but not the receiver) process
knows that the transaction is complete.

send

receive

sendreceive

asyncronous

syncronoustime time

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 328 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Message-based synchronization

Message protocols

Remote invocation

• Delay sender or receiver
until the fi rst rendezvous point

• Pass parameters

• Keep sender blocked while
receiver executes the local procedure

• Pass results

• Release both processes out of the rendezvous

invocation

results

asyncronous

syncronoustime time

remote
invocation

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 329 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Message-based synchronization

Message protocols

Remote invocation
(simulated by asynchronous messages)

• Simulate two synchronous messages

• Processes are never actually synchronized

send

receive

sendreceive

sendreceive

send receive

asyncronous

syncronoustime time

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 330 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Message-based synchronization

Message protocols

Remote invocation (no results)

Shorter form of remote invocation which does
not wait for results to be passed back.

• Still both processes are actually
synchronized at the time of the invocation.

invocation

asyncronous

syncronoustime time

remote
invocation

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 331 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Message-based synchronization

Message protocols

Remote invocation (no results)
(simulated by asynchronous messages)

• Simulate one synchronous message

• Processes are never actually synchronized

send

receive

sendreceive

asyncronous

syncronoustime time

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 332 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Message-based synchronization

Synchronous vs. asynchronous communications

Purpose ‘synchronization’: synchronous messages / remote invocations
Purpose ‘last message(s) only’: asynchronous messages

 Synchronous message passing in distributed systems requires hardware support.

 Asynchronous message passing requires the usage of buffers and overfl ow policies.

Can both communication modes emulate each other?

• Synchronous communications are emulated by a combination of asynchronous messages
in some systems (not identical with hardware supported synchronous communication).

• Asynchronous communications can be emulated in
synchronized message passing systems by introducing a ‘buffer-task’
(de-coupling sender and receiver as well as allowing for broadcasts).

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 333 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Message-based synchronization

Addressing (name space)

Direct versus indirect:
send <message> to <process-name>
wait for <message> from <process-name>
send <message> to <mailbox>
wait for <message> from <mailbox>

Asymmetrical addressing:
send <message> to …
wait for <message>

 Client-server paradigm

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 334 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Message-based synchronization

Addressing (name space)

Communication medium:

Connections Functionality

one-to-one buffer, queue, synchronization

one-to-many multicast

one-to-all broadcast

many-to-one local server, synchronization

all-to-one general server, synchronization

many-to-many general network- or bus-system

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 335 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Message-based synchronization

Message structure

• Machine dependent representations need to be taken care of in a distributed environment.

• Communication system is often outside the typed language environment.

Most communication systems are handling streams (packets) of a basic element type only.

 Conversion routines for data-structures other then the basic element type are supplied …

… manually (POSIX, C)

… semi-automatic (CORBA)

… automatic (compiler-generated) and typed-persistent (Ada, CHILL, Occam2)

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 336 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Message-based synchronization

Message structure (Ada)

package Ada.Streams is
 pragma Pure (Streams);
 type Root_Stream_Type is abstract tagged limited private;
 type Stream_Element is mod implementation-defined;
 type Stream_Element_Offset is range implementation-defined;

 subtype Stream_Element_Count is
 Stream_Element_Offset range 0..Stream_Element_Offset’Last;

 type Stream_Element_Array is
 array (Stream_Element_Offset range <>) of Stream_Element;

 procedure Read (…) is abstract;
 procedure Write (…) is abstract;

private
 … -- not specified by the language
end Ada.Streams;

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 337 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Message-based synchronization

Message structure (Ada)
Reading and writing values of any subtype S of a specifi c type T to a Stream:

procedure S’Write (Stream : access Ada.Streams.Root_Stream_Type’Class;
 Item : in T);

procedure S’Class’Write (Stream : access Ada.Streams.Root_Stream_Type’Class;
 Item : in T’Class);

procedure S’Read (Stream : access Ada.Streams.Root_Stream_Type’Class;
 Item : out T);

procedure S’Class’Read (Stream : access Ada.Streams.Root_Stream_Type’Class;
 Item : out T’Class)

Reading and writing values, bounds and discriminants
of any subtype S of a specifi c type T to a Stream:

procedure S’Output (Stream : access Ada.Streams.Root_Stream_Type’Class;
 Item : in T);

function S’Input (Stream : access Ada.Streams.Root_Stream_Type’Class) return T;

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 338 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Message-based synchronization

Message-passing systems examples:

POSIX: “message queues”:
 ordered indirect [asymmetrical | symmetrical] asynchronous

byte-level many-to-many message passing
MPI: “message passing”:

 ordered [direct | indirect] [asymmetrical | symmetrical] asynchronous memory-block-
level [one-to-one | one-to-many | many-to-one | many-to-many] message passing

CHILL: “buffers”, ”signals”:
 ordered indirect [asymmetrical | symmetrical] [synchronous | asynchronous]

typed [many-to-many | many-to-one] message passing
Occam2: “channels”:

 ordered indirect symmetrical synchronous fully-typed one-to-one message passing
Ada: “(extended) rendezvous”:

 ordered direct asymmetrical [synchronous | asynchronous]
fully-typed many-to-one remote invocation

Java: no message passing system defi ned

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 339 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Message-based synchronization

Message-passing systems examples:
o

rd
er

ed

sy
m

m
et

ri
ca

l

as
ym

m
et

ri
ca

l

sy
n

ch
ro

n
o

u
s

as
yn

ch
ro

n
o

u
s

d
ir

ec
t

in
d

ir
ec

t

contents o
n

e-
to

-o
n

e

m
an

y-
to

-o
n

e

m
an

y-
to

-m
an

y

method
POSIX: byte-stream message queues

MPI: memory-blocks message passing
CHILL: basic types message passing

Occam2: fully typed message passing
Ada: fully typed remote invocation
Java: no message passing system defi ned

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 340 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Message-based synchronization

Message-based synchronization in Occam2
Communication is ensured by means of a ‘channel’, which:

• can be used by one writer and one reader process only

• and is synchronous:

CHAN OF INT SensorChannel:
PAR
 INT reading:
 SEQ i = 0 FOR 1000
 SEQ
 -- generate reading
 SensorChannel ! reading
 INT data:
 SEQ i = 0 FOR 1000
 SEQ
 SensorChannel ? data
 -- employ data

concurrent entities are

synchronized at these points
g

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 341 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Message-based synchronization

Message-based synchronization in Occam2
Communication is ensured by means of a ‘channel’, which:

• can be used by one writer and one reader process only

• and is synchronous:

CHAN OF INT SensorChannel:
PAR
 INT reading:
 SEQ i = 0 FOR 1000
 SEQ
 -- generate reading
 SensorChannel ! reading
 INT data:
 SEQ i = 0 FOR 1000
 SEQ
 SensorChannel ? data
 -- employ data

Essential Occam2 keywords

ALT PAR SEQ PRI

ANY CHAN OF

DATA TYPE RECORD OFFSETOF PACKED

BOOL BYTE INT REAL

CASE IF ELSE FOR FROM WHILE

FUNCTION RESULT PROC IS

PROCESSOR PROTOCOL TIMER

SKIP STOP VALOF
a

page 341 of 700 (chapter 3: “Communication & Synchronization” up to page 350)0
 Concurrent, distributed, real-time programming language!

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 342 of 700 (chapter 3: “Communication & Synchronization” up to page 350)© 2015 Uwe R. Zimmer, The Australian National University page 342 ofy 700 (chapter 3: “Communication & Synchronization” up to page 350)0

Message-based synchronization

Message-based synchronization in CHILL
CHILL is the ‘CCITT High Level Language’,

where CCITT is the Comité Consultatif International Télégraphique et Téléphonique.

The CHILL language development was started in 1973 and standardized in 1979.
 strong support for concurrency, synchronization, and communica-
tion (monitors, buffered message passing, synchronous channels)

dcl SensorBuffer buffer (32) int;

…
send SensorBuffer (reading);

receive case
 (SensorBuffer in data) : …
esac;

send SensorChannel (reading)
 to consumer

receive case
 (SensorChannel in data): …
esac;

signal SensorChannel = (int) to consumertype;
…

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 343 of 700 (chapter 3: “Communication & Synchronization” up to page 350)© 2015 Uwe R. Zimmer, The Australian National University page 343 ofy 700 (chapter 3: “Communication & Synchronization” up to page 350)0

Message-based synchronization

Message-based synchronization in CHILL
CHILL is the ‘CCITT High Level Language’,

where CCITT is the Comité Consultatif International Télégraphique et Téléphonique.

The CHILL language development was started in 1973 and standardized in 1979.
 strong support for concurrency, synchronization, and communica-
tion (monitors, buffered message passing, synchronous channels)

dcl SensorBuffer buffer (32) int;

…
send SensorBuffer (reading);

receive case
 (SensorBuffer in data) : …
esac;

send SensorChannel (reading)
 to consumer

receive case
 (SensorChannel in data): …
esac;

signal SensorChannel = (int) to consumertype;
…

(reading (S(reading);););asynchronous

 (Ssynchronous

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 344 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Message-based synchronization

Message-based synchronization in Ada

Ada supports remote invocations ((extended) rendezvous) in form of:

• entry points in tasks

• full set of parameter profi les supported

If the local and the remote task are on different architectures,
or if an intermediate communication system is employed then:

 parameters incl. bounds and discriminants are ‘tunnelled’ through byte-stream-formats.

Synchronization:

• Both tasks are synchronized at the beginning of the remote invocation (‘rendezvous’)

• The calling task if blocked until the remote routine is completed (‘extended rendezvous’)

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 345 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Message-based synchronization

Message-based synchronization in Ada
(Rendezvous)

<entry_name> [(index)] <parameters>
 ------ waiting for synchronization
 ------ waiting for synchronization
 ------ waiting for synchronization
 ------ waiting for synchronization
 ------ accept <entry_name> [(index)]

 <parameter_profile>;
 aa----- synchronized

© 20

<

time time

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 346 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Message-based synchronization

Message-based synchronization in Ada
(Extended rendezvous)

<entry_name> [(index)] <parameters>
 ------ waiting for synchronization
 ------ waiting for synchronization
 ------ waiting for synchronization
 ------ waiting for synchronization

 ------ blocked
 ------ blocked
 ------ blocked
 ------ blocked

 accept <entry_name> [(index)]
 <parameter_profile> do
 ------ remote invocation
 ------ remote invocation
 ------ remote invocation
 end <entry_name>;

 aa---
bl k d

--

--- ee

synchronized

return results

© 20

<

time time

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 347 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Message-based synchronization

Message-based synchronization in Ada
(Rendezvous)

<entry_name> [(index)] <parameters>

 accept <entry_name> [(index)]
 <parameter_profile>;
 ------ waiting for synchronization
 ------ waiting for synchronization
 ------ waiting for synchronization

synchronized

© 20

<

time time

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 348 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Message-based synchronization

Message-based synchronization in Ada
(Extended rendezvous)

<entry_name> [(index)] <parameters>
 ------ blocked
 ------ blocked
 ------ blocked
 ------ blocked

 accept <entry_name> [(index)]
 <parameter_profile>;
 ------ waiting for synchronization
 ------ waiting for synchronization
 ------ waiting for synchronization

 ------ remote invocation
 ------ remote invocation
 ------ remote invocation
 ------ remote invocation
 end <entry_name>;

------ remot
synchronized

© 20

<

time time

 e ------ return results

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 349 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Message-based synchronization

Message-based synchronization in Ada

Some things to consider for task-entries:

• In contrast to protected-object-entries, task-entry bodies can call other blocking operations.

• Accept statements can be nested (but need to be different).

 helpful e.g. to synchronize more than two tasks.

• Accept statements can have a dedicated exception handler (like any other code-block).

Exceptions, which are not handled during the rendezvous
phase are propagated to all involved tasks.

• Parameters cannot be direct ‘access’ parameters, but can be access-types.

• ‘count on task-entries is defi ned,
but is only accessible from inside the tasks which owns the entry.

• Entry families (arrays of entries) are supported.

• Private entries (accessible for internal tasks) are supported.

Communication & Synchronization

© 2015 Uwe R. Zimmer, The Australian National University page 350 of 700 (chapter 3: “Communication & Synchronization” up to page 350)

Summary

Synchronization

• Shared memory based synchronization

• Flags, condition variables, semaphores,
conditional critical regions, monitors, protected objects.

• Guard evaluation times, nested monitor calls, deadlocks,
simultaneous reading, queue management.

• Synchronization and object orientation, blocking operations and re-queuing.

• Message based synchronization

• Synchronization models

• Addressing modes

• Message structures

• Examples

4
Non-determinism

Uwe R. Zimmer - The Australian National University

Concurrent & Distributed Systems 2015

Non-determinism

© 2015 Uwe R. Zimmer, The Australian National University page 352 of 700 (chapter 4: “Non-determinism” up to page 375)

References for this chapter

[Ben-Ari06]
M. Ben-Ari
Principles of Concurrent and Dis-
tributed Programming
2006, second edition, Prentice-
Hall, ISBN 0-13-711821-X

 [Barnes2006]
 Barnes, John
 Programming in Ada 2005
 Addison-Wesley, Pearson education, ISBN-
13 978-0-321-34078-8, Harlow, England, 2006

[AdaRM2012]
Ada Reference Manual - Lan-
guage and Standard Libraries;
ISO/IEC 8652:201x (E)

Non-determinism

© 2015 Uwe R. Zimmer, The Australian National University page 353 of 700 (chapter 4: “Non-determinism” up to page 375)

Defi nitions

Non-determinism by design:

A property of a computation which
may have more than one result.

Non-determinism by interaction:

A property of the operation environment which may
lead to different sequences of (concurrent) stimuli.

Non-determinism

© 2015 Uwe R. Zimmer, The Australian National University page 354 of 700 (chapter 4: “Non-determinism” up to page 375)

Non-determinism by design

Dijkstra’s guarded commands (non-deterministic case statements):

if x <= y -> m := x
 x >= y -> m := y

fi

 The programmer needs to design the alternatives as ‘parallel’ options:
all cases need to be covered and overlapping conditions need to lead to the same result

All true case statements in any language are potentially concurrent and non-deterministic.

Numerical non-determinism in concurrent statements (Chapel):

writeln (* reduce [i in 1..10] exp (i));
writeln (+ reduce [i in 1..1000000] i ** 2.0);

 The programmer needs to understand the
numerical implications of out-of-order expressions.

Selection is non-
deterministc for x=y

Results may be non-deterministc
depending on numeric type 0)

Non-determinism

© 2015 Uwe R. Zimmer, The Australian National University page 355 of 700 (chapter 4: “Non-determinism” up to page 375)

Non-determinism by design

Motivation for non-deterministic design

By explicitly leaving the sequence of evaluation or execution undetermined:

 The compiler / runtime environment can directly (i.e. without any analy-
sis) translate the source code into a concurrent implementation.

 The implementation gains potentially signifi cantly in performance

 The programmer does not need to handle any of the details of a concur-
rent implementation (access locks, messages, synchronizations, …)

A programming language which allows for
those formulations is required!

 current language support: Ada, X10, Chapel, Fortress, Haskell, OCaml, …

Non-determinism

© 2015 Uwe R. Zimmer, The Australian National University page 356 of 700 (chapter 4: “Non-determinism” up to page 375)

Non-determinism by interaction

Selective waiting in Occam2
ALT

 Guard1
 Process1

 Guard2
 Process2
…

• Guards are referring to boolean expressions and/or channel input operations.

• The boolean expressions are local expressions, i.e. if none of them evaluates to true
at the time of the evaluation of the ALT-statement, then the process is stopped.

• If all triggered channel input operations evaluate to false, the process is sus-
pended until further activity on one of the named channels.

• Any Occam2 process can be employed in the ALT-statement

• The ALT-statement is non-deterministic (there is also a deterministic version: PRI ALT).

Non-determinism

© 2015 Uwe R. Zimmer, The Australian National University page 357 of 700 (chapter 4: “Non-determinism” up to page 375)

Non-determinism by interaction

Selective waiting in Occam2
ALT
 NumberInBuffer < Size & Append ? Buffer [Top]
 SEQ
 NumberInBuffer := NumberInBuffer + 1
 Top := (Top + 1) REM Size
 NumberInBuffer > 0 & Request ? ANY
 SEQ
 Take ! Buffer [Base]
 NumberInBuffer := NumberInBuffer - 1
 Base := (Base + 1) REM Size

• Synchronization on input-channels only (channels are directed in Occam2):

 to initiate the sending of data (Take ! Buffer [Base]),
a request need to be made fi rst which triggers the condition: (Request ? ANY)

CSP (Hoare) also supports non-deterministic selective waiting

Non-determinism

© 2015 Uwe R. Zimmer, The Australian National University page 358 of 700 (chapter 4: “Non-determinism” up to page 375)

Non-determinism by interaction

Select function in POSIX

int pselect(int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
 const struct timespec *ntimeout, sigset_t *sigmask);

with:
• n being one more than the maximum of any fi le descriptor in any of the sets.

• after return the sets will have been reduced to the channels which have been triggered.

• the return value is used as success / failure indicator.

The POSIX select function implements parts of general selective waiting:

• pselect returns if one or multiple I/O channels have been triggered or an error occured.

 ¬ Branching into individual code sections is not provided.

 ¬ Guards are not provided.

After return it is required that the following code
implements a sequential testing of all channels in the sets.

Non-determinism

© 2015 Uwe R. Zimmer, The Australian National University page 359 of 700 (chapter 4: “Non-determinism” up to page 375)

Selective Synchronization

Message-based selective synchronization in Ada
Forms of selective waiting:

select_statement ::= selective_accept |
 conditional_entry_call |
 timed_entry_call |
 asynchronous_select

… underlying concept: Dijkstra’s guarded commands

selective_accept implements …

… wait for more than a single rendezvous at any one time

… time-out if no rendezvous is forthcoming within a specifi ed time

… withdraw its offer to communicate if no rendezvous is available immediately

… terminate if no clients can possibly call its entries

Non-determinism

© 2015 Uwe R. Zimmer, The Australian National University page 360 of 700 (chapter 4: “Non-determinism” up to page 375)

Selective Synchronization

Message-based selective synchronization in Ada
selective_accept ::= select
 [guard] selective_accept_alternative
 { or [guard] selective_accept_alternative }
 [else sequence_of_statements]
 end select;

guard ::= when <condition> => selective_accept_alternative ::= accept_alternative |
 delay_alternative |
 terminate_alternative

accept_alternative ::= accept_statement [sequence_of_statements]
delay_alternative ::= delay_statement [sequence_of_statements]
terminate_alternative ::= terminate;

accept_statement ::= accept entry_direct_name [(entry_index)] parameter_profile [do
 handled_sequence_of_statements
 end [entry_identifier]];
delay_statement ::= delay until delay_expression; | delay delay_expression;

Non-determinism

© 2015 Uwe R. Zimmer, The Australian National University page 361 of 700 (chapter 4: “Non-determinism” up to page 375)

Selective Synchronization

Basic forms of selective synchronization
(select-accept)

select
 accept …
or
 accept …
or
 accept …
…
end select;

• If none of the entries have waiting calls
 the process is suspended

until a call arrives.

• If exactly one of the entries has waiting calls
 this entry is selected.

• If multiple entries have waiting calls
 one of those is selected (non-determin-

istically). The selection can be prioritized
by means of the real-time-systems annex.

The code following the select-
ed entry (if any) is executed and the
select statement completes.

Non-determinism

© 2015 Uwe R. Zimmer, The Australian National University page 362 of 700 (chapter 4: “Non-determinism” up to page 375)

Selective Synchronization

Basic forms of selective synchronization
(select-guarded-accept)

select
 when <condition> => accept …
or
 when <condition> => accept …
or
 when <condition> => accept …
…
end select;

• If all conditions are ‘true’
 identical to the previous form.

• If some condition evaluate to ‘true’
 the accept statement after those condi-

tions are treated like in the previous form.

• If all conditions evaluate to ‘false’
 Program_Error is raised.

Hence it is important that the set of con-
ditions covers all possible states.

This form is identical to
Dijkstra’s guarded commands.

Non-determinism

© 2015 Uwe R. Zimmer, The Australian National University page 363 of 700 (chapter 4: “Non-determinism” up to page 375)

Selective Synchronization

Basic forms of selective synchronization
(select-guarded-accept-else)

select
 when <condition> => accept …
or
 when <condition> => accept …
or
 when <condition> => accept …
…
else
 <statements>
end select;

• If all currently open entries have no waiting
calls or all entries are closed

 The else alternative is chosen, the as-
sociated statements executed and
the select statement completes.

• Otherwise one of the open entries
with waiting calls is chosen as above.

This form never suspends the task.

This enables a task to withdraw its of-
fer to accept a set of calls if no
tasks are currently waiting.

Non-determinism

© 2015 Uwe R. Zimmer, The Australian National University page 364 of 700 (chapter 4: “Non-determinism” up to page 375)

Selective Synchronization

Basic forms of selective synchronization
(select-guarded-accept-delay)

select
 when <condition> => accept …
or
 when <condition> => accept …
or
 when <condition> => accept …
…
or
 when <condition> => delay [until] …
 <statements>
or
 when <condition> => delay [until] …
 <statements>
…
end select;

• If none of the open entries have waiting
calls before the deadline specifi ed by the
earliest open delay alternative

 This earliest delay alternative is chosen and
the statements associated with it executed.

• Otherwise one of the open entries
with waiting calls is chosen as above.

This enables a task to withdraw its of-
fer to accept a set of calls if no other
task is calling after some time.

Non-determinism

© 2015 Uwe R. Zimmer, The Australian National University page 365 of 700 (chapter 4: “Non-determinism” up to page 375)

Selective Synchronization

Basic forms of selective synchronization
(select-guarded-accept-terminate)

select
 when <condition> => accept …
or
 when <condition> => accept …
or
 when <condition> => accept …
…
or
 when <condition> => terminate;
…
end select;

• If none of the open entries have waiting
calls and none of them can ever be called
again

 The terminate alternative is
chosen, i.e. the task is terminated.

This situation occurs if:
 … all tasks which can possibly call on
any of the open entries are terminated.

 or … all remaining tasks which can possibly
call on any of the open entries are waiting
on select-terminate statements themselves
and none of their open entries can be
called either. In this case all those waiting-
for-termination tasks are terminated as well.

terminate cannot be

mixed with else or delay

Non-determinism

© 2015 Uwe R. Zimmer, The Australian National University page 366 of 700 (chapter 4: “Non-determinism” up to page 375)

Selective Synchronization

Message-based selective synchronization in Ada
Forms of selective waiting:

select_statement ::= selective_accept |
 conditional_entry_call |
 timed_entry_call |
 asynchronous_select

… underlying concept: Dijkstra’s guarded commands

conditional_entry_call and timed_entry_call implements …

… the possibility to withdraw an outgoing call.

… this might be restricted if calls have already been partly processed.

Non-determinism

© 2015 Uwe R. Zimmer, The Australian National University page 367 of 700 (chapter 4: “Non-determinism” up to page 375)

Selective Synchronization

Conditional entry-calls

conditional_entry_call ::=
 select
 entry_call_statement
 [sequence_of_statements]
 else
 sequence_of_statements
 end select;

Example:

select
 Light_Monitor.Wait_for_Light;
 Lux := True;
else
 Lux := False;
end;

• If the call is not accepted immediately
 The else alternative is chosen.

This is e.g. useful to probe the
state of a server before commit-
ting to a potentially blocking call.

Even though it is tempting to use this
statement in a “busy-waiting” seman-
tic, there is usually no need to do so,
as better alternatives are available.

There is only one entry-call
and one else alternative.

Non-determinism

© 2015 Uwe R. Zimmer, The Australian National University page 368 of 700 (chapter 4: “Non-determinism” up to page 375)

Selective Synchronization

Timed entry-calls

timed_entry_call ::=
 select
 entry_call_statement
 [sequence_of_statements]
 or
 delay_alternative
 end select;

Example:
select
 Controller.Request (Some_Item);
 ------ process data
or
 delay 45.0; ------ seconds
 ------ try something else
end select;

• If the call is not accepted before the dead-
line specifi ed by the delay alternative

 The delay alternative is chosen.

This is e.g. useful to withdraw an entry
call after some specifi ed time-out.

There is only one entry-call and
one delay alternative.

Non-determinism

© 2015 Uwe R. Zimmer, The Australian National University page 369 of 700 (chapter 4: “Non-determinism” up to page 375)

Selective Synchronization

Message-based selective synchronization in Ada
Forms of selective waiting:

select_statement ::= selective_accept |
 conditional_entry_call |
 timed_entry_call |
 asynchronous_select

… underlying concept: Dijkstra’s guarded commands

asynchronous_select implements …

… the possibility to escape a running code block due to an event from outside this task.
(outside the scope of this course check: Real-Time Systems)

Non-determinism

© 2015 Uwe R. Zimmer, The Australian National University page 370 of 700 (chapter 4: “Non-determinism” up to page 375)

Non-determinism

Sources of Non-determinism
As concurrent entities are not in “lockstep” synchronization, they “overtake” each other
and arrive at synchronization points in non-deterministic order, due to (just a few):

• Operating systems / runtime environments:
 Schedulers are often non-deterministic.
 System load will have an infl uence on concurrent execution.
 Message passing systems react load depended.

• Networks & communication systems:
 Traffi c will arrive in an unpredictable way (non-deterministic).
 Communication systems congestions are generally unpredictable.

• Computing hardware:
 Timers drift and clocks have granularities.
 Processors have out-of-order units.

• … basically: Physical systems (and computer systems connected to the physical world)
are intrinsically non-deterministic.

Non-determinism

© 2015 Uwe R. Zimmer, The Australian National University page 371 of 700 (chapter 4: “Non-determinism” up to page 375)

Non-determinism

Correctness of non-deterministic programs

Partial correctness:
((,) (,)(() terminates Program I O Q I OP I &/

Total correctness:
() ((,) (,))(P I terminates Program I O Q I O& /

Safety properties:
(() (,)) (,)P I Processes I S Q I S&/ X

where QX means that Q does always hold

Liveness properties:
(() (,)) (,)P I Processes I S Q I S&/ o
where Qo means that Q does eventually hold (and will then stay true)

and S is the current state of the concurrent system

Non-determinism

© 2015 Uwe R. Zimmer, The Australian National University page 372 of 700 (chapter 4: “Non-determinism” up to page 375)

Non-determinism

Correctness of non-deterministic programs

 Correctness predicates need to hold true
irrespective of the actual sequence of interaction points.

or

 Correctness predicates need to hold true
for all possible sequences of interaction points.

Therefore correctness predicates need to be based on invariants,
i.e. invariant predicates which are independent of the potential execution sequences,
yet support the overall correctness predicates.

Non-determinism

© 2015 Uwe R. Zimmer, The Australian National University page 373 of 700 (chapter 4: “Non-determinism” up to page 375)

Non-determinism

Correctness of non-deterministic programs
For example (in verbal form):
“Mutual exclusion accessing a specifi c resource holds true,
for all possible numbers, sequences or interleavings of requests to it”

An invariant would for instance be that the number of writing
tasks inside a protected object is less or equal to one.

 Those invariants are the only practical way to guarantee (in a logical sense)
correctness in concurrent / non-deterministic systems.

(as enumerating all possible cases and proving them individually is in general not feasible)

Non-determinism

© 2015 Uwe R. Zimmer, The Australian National University page 374 of 700 (chapter 4: “Non-determinism” up to page 375)

Non-determinism

Correctness of non-deterministic programs

select
 when <condition> => accept …
or
 when <condition> => accept …
or
 when <condition> => accept …
…
end select;

Concrete:

 Every time you formulate a non-de-
terminstic statement like the one on
the left you need to formulate an
invariant which hold true whichever
alternative will actually be chosen.

This is very similar to fi nding
loop invariants in sequential programs

Non-determinism

© 2015 Uwe R. Zimmer, The Australian National University page 375 of 700 (chapter 4: “Non-determinism” up to page 375)

Summary

Non-Determinism

• Non-determimism by design:
• Benefi ts & considerations

• Non-determinism by interaction:
• Selective synchronization

• Selective accepts

• Selective calls

• Correctness of non-deterministic programs:
• Sources of non-determinism

• Predicates & invariants

5
Scheduling

Uwe R. Zimmer - The Australian National University

Concurrent & Distributed Systems 2015

Scheduling

© 2015 Uwe R. Zimmer, The Australian National University page 377 of 700 (chapter 5: “Scheduling” up to page 406)

References for this chapter

 [Ben2006]
 Ben-Ari, M
 Principles of Concurrent and Dis-
tributed Programming
 second edition, Prentice-Hall 2006

[AdaRM2012]
Ada Reference Manual - Lan-
guage and Standard Libraries;
ISO/IEC 8652:201x (E)

 [Stallings2001]
 Stallings, William
 Operating Systems
 Prentice Hall, 2001

Scheduling

© 2015 Uwe R. Zimmer, The Australian National University page 378 of 700 (chapter 5: “Scheduling” up to page 406)

Motivation and defi nition of terms

Purpose of scheduling

Two scenarios for scheduling algorithms:

1. Ordering resource assignments (CPU time, network access, …).
 live, on-line application of scheduling algorithms.

2. Predicting system behaviours under anticipated loads.
 simulated, off-line application of scheduling algorithms.

Predictions are used:

• at compile time: to confi rm the feasibility of the system, or to predict resource needs, …

• at run time: to permit admittance of new requests or for load-balancing, …

Scheduling

© 2015 Uwe R. Zimmer, The Australian National University page 379 of 700 (chapter 5: “Scheduling” up to page 406)

Motivation and defi nition of terms

Criteria

Performance criteria: Predictability criteria:

Process / user perspective:

minimize the … minimize deviation from given …

Waiting time minima / maxima / average / variance minima / maxima

Response time minima / maxima / average / variance minima / maxima / deadlines

Turnaround time minima / maxima / average / variance minima / maxima / deadlines

System perspective:

maximize the …

Throughput minima / maxima / average

Utilization CPU busy time

Scheduling

© 2015 Uwe R. Zimmer, The Australian National University page 380 of 700 (chapter 5: “Scheduling” up to page 406)

Defi nition of terms

Time scales of scheduling

CPU
ydaer

blocked

pre-emption or cycle done

block or synchronize

executing
dispatch

Short-term

Scheduling

© 2015 Uwe R. Zimmer, The Australian National University page 381 of 700 (chapter 5: “Scheduling” up to page 406)

Defi nition of terms

Time scales of scheduling

CPU
ydaer

ready, suspended

blocked, suspended

blocked

pre-emption or cycle done

block or synchronize

executing
dispatch

suspend (swap-out)

swap-in

swap-out

unblock

suspend (swap-out)

Short-term

Medium-term

Scheduling

© 2015 Uwe R. Zimmer, The Australian National University page 382 of 700 (chapter 5: “Scheduling” up to page 406)

Defi nition of terms

Time scales of scheduling

CPU
creation

ydaerhctab

ready, suspended

blocked, suspended

blocked

pre-emption or cycle done

terminate.

block or synchronize

executingadmit

dispatch

suspend (swap-out)

swap-in

swap-out

unblock

suspend (swap-out)

Long-term

Short-term

Medium-term

Scheduling

© 2015 Uwe R. Zimmer, The Australian National University page 383 of 700 (chapter 5: “Scheduling” up to page 406)

Performance scheduling

Requested resource times

time0 5 10 15 20 25 30 35 40 45
(Ti, Ci)

(4, 1)

(12, 3)

(16, 8)

Tasks have an average time between instantiations of Ti

and a constant computation time of Ci

Scheduling

© 2015 Uwe R. Zimmer, The Australian National University page 384 of 700 (chapter 5: “Scheduling” up to page 406)

Performance scheduling

First come, fi rst served (FCFS)

time0 5 10 15 20 25 30 35 40 45
(Ti, Ci)

(4, 1)

(12, 3)

(16, 8)

Waiting time: 0..11, average: 5.9 – Turnaround time: 3..12, average: 8.4

As tasks apply concurrently for resources, the actual sequence of arrival is non-deterministic.
 hence even a deterministic scheduling schema like FCFS can lead to different outcomes.

Scheduling

© 2015 Uwe R. Zimmer, The Australian National University page 385 of 700 (chapter 5: “Scheduling” up to page 406)

Performance scheduling

First come, fi rst served (FCFS)

time0 5 10 15 20 25 30 35 40 45
(Ti, Ci)

(4, 1)

(12, 3)

(16, 8)

Waiting time: 0..11, average: 5.4 – Turnaround time: 3..12, average: 8.0

 In this example:
the average waiting times vary between 5.4 and 5.9
the average turnaround times vary between 8.0 and 8.4

 Shortest possible maximal turnaround time!

Scheduling

© 2015 Uwe R. Zimmer, The Australian National University page 386 of 700 (chapter 5: “Scheduling” up to page 406)

Performance scheduling

Round Robin (RR)

time0 5 10 15 20 25 30 35 40 45
(Ti, Ci)

(4, 1)

(12, 3)

(16, 8)

Waiting time: 0..5, average: 1.2 – Turnaround time: 1..20, average: 5.8

 Optimized for swift initial responses.

 “Stretches out” long tasks.

 Bound maximal waiting time! (depended only on the number of tasks)

Scheduling

© 2015 Uwe R. Zimmer, The Australian National University page 387 of 700 (chapter 5: “Scheduling” up to page 406)

Performance scheduling

Feedback with 2i pre-emption intervals

• Implement multiple
hierarchical ready-queues.

• Fetch processes from the
highest fi lled ready queue.

• Dispatch more CPU time for
lower priorities (2i units).

 Processes on lower ranks
may suffer starvation.

 New and short tasks will be preferred.

C
PU

priority 0

priority 1

executingadmit

dispatch 20

priority i

dispatch 21

dispatch 2i

Scheduling

© 2015 Uwe R. Zimmer, The Australian National University page 388 of 700 (chapter 5: “Scheduling” up to page 406)

Performance scheduling

Feedback with 2i pre-emption intervals - sequential

time0 5 10 15 20 25 30 35 40 45
(Ti, Ci)

(4, 1)

(12, 3)

(16, 8)

Waiting time: 0..5, average: 1.5 – Turnaround time: 1..21, average: 5.7

 Optimized for swift initial responses.

 Prefers short tasks and long tasks can suffer starvation.

 Very short initial response times! and good average turnaround times.

Scheduling

© 2015 Uwe R. Zimmer, The Australian National University page 389 of 700 (chapter 5: “Scheduling” up to page 406)

Performance scheduling

Feedback with 2i pre-emption intervals - overlapping

time0 5 10 15 20 25 30 35 40 45
(Ti, Ci)

(4, 1)

(12, 3)

(16, 8)

Waiting time: 0..3, average: 0.9 – Turnaround time: 1..45, average: 7.7

 Optimized for swift initial responses.

 Prefers short tasks and long tasks can suffer starvation.

 Long tasks are delayed until all queues run empty!

Scheduling

© 2015 Uwe R. Zimmer, The Australian National University page 390 of 700 (chapter 5: “Scheduling” up to page 406)

Performance scheduling

Shortest job fi rst

time0 5 10 15 20 25 30 35 40 45
(Ti, Ci)

(4, 1)

(12, 3)

(16, 8)

Waiting time: 0..11, average: 3.7 – Turnaround time: 1..14, average: 6.3

 Optimized for good average performance with minimal task-switches.

 Prefers short tasks but all tasks will be handled.

 Good choice if computation times are known and task switches are expensive!

Scheduling

© 2015 Uwe R. Zimmer, The Australian National University page 391 of 700 (chapter 5: “Scheduling” up to page 406)

Performance scheduling

Shortest job fi rst

time0 5 10 15 20 25 30 35 40 45
(Ti, Ci)

(4, 1)

(12, 3)

(16, 8)

Waiting time: 0..10, average: 3.4 – Turnaround time: 1..14, average: 6.0

 Can be sensitive to non-deterministic arrival sequences.

Scheduling

© 2015 Uwe R. Zimmer, The Australian National University page 392 of 700 (chapter 5: “Scheduling” up to page 406)

Performance scheduling

Highest Response Ration C
W C

i
i i+ First (HRRF)

time0 5 10 15 20 25 30 35 40 45
(Ti, Ci)

(4, 1)

(12, 3)

(16, 8)

Waiting time: 0..9, average: 4.1 – Turnaround time: 2..13, average: 6.6

 Blend between Shortest-Job-First and First-Come-First-Served.

 Prefers short tasks but long tasks gain preference over time.

 More task switches and worse averages than SJF but better upper bounds!

Scheduling

© 2015 Uwe R. Zimmer, The Australian National University page 393 of 700 (chapter 5: “Scheduling” up to page 406)

Performance scheduling

Shortest Remaining Time First (SRTF)

time0 5 10 15 20 25 30 35 40 45
(Ti, Ci)

(4, 1)

(12, 3)

(16, 8)

Waiting time: 0..6, average: 0.7 – Turnaround time: 1..21, average: 4.4

 Optimized for good averages.

 Prefers short tasks and long tasks can suffer starvation..

 Better averages than Feedback scheduling but with longer absolute waiting times!

Scheduling

© 2015 Uwe R. Zimmer, The Australian National University page 394 of 700 (chapter 5: “Scheduling” up to page 406)

Performance scheduling

Comparison (in order of appearance)

time0 5 10 15 20 25 30 35 40 45

FCFS

FCFS

RR

FB-
seq.
FB-

ovlp

SJF

SJF

HRRF

SRTF

Waiting times

Turnaround times

Averages

Scheduling

© 2015 Uwe R. Zimmer, The Australian National University page 395 of 700 (chapter 5: “Scheduling” up to page 406)

Performance scheduling

Comparison by shortest maximal waiting

time0 5 10 15 20 25 30 35 40 45

FCFS

FCFS

RR

FB-
seq.
FB-

ovlp

SJF

SJF

HRRF

SRTF

 Providing upper bounds to waiting times Swift response systems

Waiting times

Turnaround times

Averages

Scheduling

© 2015 Uwe R. Zimmer, The Australian National University page 396 of 700 (chapter 5: “Scheduling” up to page 406)

Performance scheduling

Comparison by shortest average waiting

time0 5 10 15 20 25 30 35 40 45

FCFS

FCFS

RR

FB-
seq.

FB-
ovlp

SJF

SJF

HRRF

SRTF

 Providing short average waiting times Very swift response in most cases

Waiting times

Turnaround times

Averages

Scheduling

© 2015 Uwe R. Zimmer, The Australian National University page 397 of 700 (chapter 5: “Scheduling” up to page 406)

Performance scheduling

Comparison by shortest maximal turnaround

time0 5 10 15 20 25 30 35 40 45

FCFS

FCFS

RR

FB-
seq.
FB-

ovlp

SJF

SJF

HRRF

SRTF

 Providing upper bounds to turnaround times No tasks are left behind

Waiting times

Turnaround times

Averages

Scheduling

© 2015 Uwe R. Zimmer, The Australian National University page 398 of 700 (chapter 5: “Scheduling” up to page 406)

Performance scheduling

Comparison by shortest average turnaround

time0 5 10 15 20 25 30 35 40 45

FCFS

FCFS

RR

FB-
seq.

FB-
ovlp

SJF

SJF

HRRF

SRTF

 Providing good average performance High throughput systems

Waiting times

Turnaround times

Averages

Scheduling

© 2015 Uwe R. Zimmer, The Australian National University page 399 of 700 (chapter 5: “Scheduling” up to page 406)

Performance scheduling

Comparison overview
Selection

Pre-
emption

Waiting Turnaround
Preferred

jobs
Starvation
possible?

Methods without any knowledge about the processes

FCFS ()max Wi no long
long average &
short maximum

equal no

RR equal share yes bound
good average &
large maximum

short no

FB
priority
queues

yes very short
short average &
long maximum

short no

Methods employing computation time Ci and elapsed time Ei

SJF ()min Ci no medium medium short yes

HRRF ()max C
W C

i
i i+ no

controllable
compromise

controllable
compromise

controllable no

SRTF ()min C Ei i- yes very short wide variance short yes

Scheduling

© 2015 Uwe R. Zimmer, The Australian National University page 400 of 700 (chapter 5: “Scheduling” up to page 406)

Predictable scheduling

Towards predictable scheduling …

Task requirements (Quality of service):

 Guarantee data fl ow levels

 Guarantee reaction times

 Guarantee deadlines

 Guarantee delivery times

 Provide bounds for the variations in results

Examples:

• Streaming media broadcasts, playing HD videos, live mixing audio/video, …

• Reacting to users, Reacting to alarm situations, …

• Delivering a signal to the physical world at the required time, …

Scheduling

© 2015 Uwe R. Zimmer, The Australian National University page 401 of 700 (chapter 5: “Scheduling” up to page 406)

Predictable scheduling

Temporal scopes

Common attributes:

• Minimal & maximal
delay after creation

• Maximal elapsed time

• Maximal execution time

• Absolute deadline Task i

t1 0352025 10

deadline

min. delay
max. delay

created

max. elapse time
max. exec. time

Scheduling

© 2015 Uwe R. Zimmer, The Australian National University page 402 of 700 (chapter 5: “Scheduling” up to page 406)

Predictable scheduling

Temporal scopes

Common attributes:

• Minimal & maximal
delay after creation

• Maximal elapsed time

• Maximal execution time

• Absolute deadline Task i

t1 0352025 10

deadline

min. delay
max. delay

activatedcreated

max. elapse time
max. exec. time

Scheduling

© 2015 Uwe R. Zimmer, The Australian National University page 403 of 700 (chapter 5: “Scheduling” up to page 406)

Predictable scheduling

Temporal scopes

Common attributes:

• Minimal & maximal
delay after creation

• Maximal elapsed time

• Maximal execution time

• Absolute deadline Task i

t1 0352025 10

deadline

min. delay
max. delay

activated

suspended

re-activated

terminated

created

elapse time

max. elapse time
max. exec. time

Scheduling

© 2015 Uwe R. Zimmer, The Australian National University page 404 of 700 (chapter 5: “Scheduling” up to page 406)

Predictable scheduling

Temporal scopes

Common attributes:

• Minimal & maximal
delay after creation

• Maximal elapsed time

• Maximal execution time

• Absolute deadline Task i

t1 0352025 10

deadline

execution time

min. delay
max. delay

activated

suspended

re-activated

terminated

created

elapse time

max. elapse time
max. exec. time

Scheduling

© 2015 Uwe R. Zimmer, The Australian National University page 405 of 700 (chapter 5: “Scheduling” up to page 406)

Predictable scheduling

Common temporal scope attributes

Temporal scopes can be:

Periodic controllers, routers, schedulers, streaming processes, …

Aperiodic periodic ‘on average’ tasks, i.e. regular but not rigidly timed, …

Sporadic / Transient user requests, alarms, I/O interaction, …

Deadlines can be:

“Hard” single failure leads to severe malfunction and/or disaster

“Firm”
 results are meaningless after the deadline

 only multiple or permanent failures lead to malfunction

“Soft” results are still useful after the deadline

© 2015 Uwe R. Zim

“

Se
m

an
ti

cs
 d

efi
 n

ed

b
y

ap
p

lic
at

io
n

Scheduling

© 2015 Uwe R. Zimmer, The Australian National University page 406 of 700 (chapter 5: “Scheduling” up to page 406)

Summary

Scheduling

• Basic performance scheduling

• Motivation & Terms

• Levels of knowledge / assumptions about the task set

• Evaluation of performance and selection of appropriate methods

• Towards predictable scheduling

• Motivation & Terms

• Categories & Examples

6
Safety & Liveness

Uwe R. Zimmer - The Australian National University

Concurrent & Distributed Systems 2015

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 408 of 700 (chapter 6: “Safety & Liveness” up to page 457)

References for this chapter

 [Ben2006]
 Ben-Ari, M
 Principles of Concurrent and Dis-
tributed Programming
 second edition, Prentice-Hall 2006

 [Chandy1983]
 Chandy, K , Misra, Jayadev & Haas, Laura
 Distributed deadlock detection
 Transactions on Computer Sys-
tems (TOCS) 1983 vol. 1 (2)

 [Silberschatz2001]
 Silberschatz, Abraham , Gal-
vin, Peter & Gagne, Greg
 Operating System Concepts
 John Wiley & Sons, Inc., 2001

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 409 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Repetition

Correctness concepts in concurrent systems

Extended concepts of correctness in concurrent systems:
 ¬ Termination is often not intended or even considered a failure

Safety properties:
(() (,)) (,)P I Processes I S Q I S&/ X

where QX means that Q does always hold

Liveness properties:
(() (,)) (,)P I Processes I S Q I S&/ o
where Qo means that Q does eventually hold (and will then stay true)

and S is the current state of the concurrent system

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 410 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Repetition

Correctness concepts in concurrent systems

Liveness properties:
(() (,)) (,)P I Processes I S Q I S&/ o
where Qo means that Q does eventually hold (and will then stay true)

Examples:

• Requests need to complete eventually.

• The state of the system needs to be displayed eventually.

• No part of the system is to be delayed forever (fairness).

 Interesting liveness properties can become very hard to proof

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 411 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Liveness

Fairness
Liveness properties:

(() (,)) (,)P I Processes I S Q I S&/ o
where Qo means that Q does eventually hold (and will then stay true)

Fairness (as a means to avoid starvation): Resources will be granted …

• Weak fairness: R G&?4 ? … eventually, if a process requests continually.

• Strong fairness: R G&4? ? … eventually, if a process requests infi nitely often.

• Linear waiting: R G&? ? … before any other process had the same resource
granted more than once (common fairness in distributed systems).

• First-in, fi rst-out: R G&? ? … before any other process which applied for the same
resource at a later point in time (common fairness in single-node systems).

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 412 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Revisiting

Correctness concepts in concurrent systems

Safety properties:
(() (,)) (,)P I Processes I S Q I S&/ X

where QX means that Q does always hold

Examples:

• Mutual exclusion (no resource collisions) has been addressed

• Absence of deadlocks to be addressed now
(and other forms of ‘silent death’ and ‘freeze’ conditions)

• Specifi ed responsiveness or free capabilities Real-time systems
(typical in real-time / embedded systems or server applications)

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 413 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Deadlocks

Most forms of synchronization may lead to

Deadlocks
(Avoidance / prevention of deadlocks is one central safety property)

 How to predict them?

 How to fi nd them?

 How to resolve them?

 … or are there structurally dead-lock free forms of synchronization?

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 414 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Towards synchronization

process P1;
 statement X;

 wait (reserve_1);
 wait (reserve_2);
 statement Y; -- employ all resources
 signal (reserve_2);
 signal (reserve_1);

 statement Z;
end P1;

process P2;
 statement A;

 wait (reserve_2);
 wait (reserve_1);
 statement B; -- employ all resources
 signal (reserve_1);
 signal (reserve_2);

 statement C;
end P2;

Sequence of operations: A B C< < ; X Y Z< < ; , , ,X Z A B C;6 @; , , ,A C X Y Z;6 @; B YJ ;6 @

or: A X;6 @ followed by a deadlock situation.

Reserving resources in reverse order

var reserve_1, reserve_2 : semaphore := 1;

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 415 of 700 (chapter 6: “Safety & Liveness” up to page 457)

process P1;
 statement X;

 wait (reserve_1);
 wait (reserve_2);
 statement Y;
 signal (reserve_2);
 signal (reserve_1);

 statement Z;
end P1;

process P2;
 statement A;

 wait (reserve_2);
 wait (reserve_3);
 statement B;
 signal (reserve_3);
 signal (reserve_2);

 statement C;
end P2;

process P3;
 statement K;

 wait (reserve_3);
 wait (reserve_1);
 statement L;
 signal (reserve_1);
 signal (reserve_3);

 statement M;
end P3;

Towards synchronization

Sequence of operations: A B C< < ; X Y Z< < ; K L M< < ;
 , , , ,X Z A B C K M; ;6 @; , , , ,A C X Y Z K M; ;6 @; , , , ,A C K L M X Z; ;6 @; B Y LJ ; ;6 @

or: A X K; ;6 @ followed by a deadlock situation.

Circular dependencies

var reserve_1, reserve_2, reserve_3 : semaphore := 1;

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 416 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Deadlocks

Necessary deadlock conditions:

1. Mutual exclusion:
resources cannot be used simultaneously.

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 417 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Deadlocks

Necessary deadlock conditions:

1. Mutual exclusion:
resources cannot be used simultaneously.

2. Hold and wait:
a process applies for a resource, while it is holding another resource (sequential requests).

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 418 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Deadlocks

Necessary deadlock conditions:

1. Mutual exclusion:
resources cannot be used simultaneously.

2. Hold and wait:
a process applies for a resource, while it is holding another resource (sequential requests).

3. No pre-emption:
resources cannot be pre-empted; only the process itself can release resources.

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 419 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Deadlocks

Necessary deadlock conditions:

1. Mutual exclusion:
resources cannot be used simultaneously.

2. Hold and wait:
a process applies for a resource, while it is holding another resource (sequential requests).

3. No pre-emption:
resources cannot be pre-empted; only the process itself can release resources.

4. Circular wait: a ring list of processes exists,
where every process waits for release of a resource by the next one.

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 420 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Deadlocks

Necessary deadlock conditions:

1. Mutual exclusion:
resources cannot be used simultaneously.

2. Hold and wait:
a process applies for a resource, while it is holding another resource (sequential requests).

3. No pre-emption:
resources cannot be pre-empted; only the process itself can release resources.

4. Circular wait: a ring list of processes exists,
where every process waits for release of a resource by the next one.

 A system may become deadlocked, if all these conditions apply!

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 421 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Deadlocks

Deadlock strategies:

• Ignorance & restart
 Kill or restart unresponsive processes, power-cycle the computer, …

• Deadlock detection & recovery
 fi nd deadlocked processes and recover the system in a coordinated way

• Deadlock avoidance
 the resulting system state is checked before any resources are actually assigned

• Deadlock prevention
 the system prevents deadlocks by its structure

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 422 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Deadlocks

Deadlock prevention
(Remove one of the four necessary deadlock conditions)

1. Break Mutual exclusion: Mutual exclusion
Hold and wait

No pre-emption
Circular wait

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 423 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Deadlocks

Deadlock prevention
(remove one of the four necessary deadlock conditions)

1. Break Mutual exclusion:
By replicating critical resources, mutual exclusion becomes un-
necessary (only applicable in very specifi c cases).

2. Break Hold and wait:

Mutual exclusion
Hold and wait

No pre-emption
Circular wait

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 424 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Deadlocks

Deadlock prevention
(remove one of the four necessary deadlock conditions)

1. Break Mutual exclusion:
By replicating critical resources, mutual exclusion becomes un-
necessary (only applicable in very specifi c cases).

2. Break Hold and wait:
Allocation of all required resources in one request.
Processes can either hold none or all of their required resources.

3. Introduce Pre-emption: :

Mutual exclusion
Hold and wait

No pre-emption
Circular wait

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 425 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Deadlocks

Deadlock prevention
(remove one of the four necessary deadlock conditions)

1. Break Mutual exclusion:
By replicating critical resources, mutual exclusion becomes un-
necessary (only applicable in very specifi c cases).

2. Break Hold and wait:
Allocation of all required resources in one request.
Processes can either hold none or all of their required resources.

3. Introduce Pre-emption:
Provide the additional infrastructure to allow for pre-emption of resources. Mind that re-
sources cannot be pre-empted, if their states cannot be fully stored and recovered.

4. Break Circular waits:

Mutual exclusion
Hold and wait

No pre-emption
Circular wait

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 426 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Deadlocks

Deadlock prevention
(remove one of the four necessary deadlock conditions)

1. Break Mutual exclusion:
By replicating critical resources, mutual exclusion becomes un-
necessary (only applicable in very specifi c cases).

2. Break Hold and wait:
Allocation of all required resources in one request.
Processes can either hold none or all of their required resources.

3. Introduce Pre-emption:
Provide the additional infrastructure to allow for pre-emption of resources. Mind that re-
sources cannot be pre-empted, if their states cannot be fully stored and recovered.

4. Break Circular waits:
E.g. order all resources globally and restrict processes to request resources in that order only.

Mutual exclusion
Hold and wait

No pre-emption
Circular wait

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 427 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

,RAG V E= " ,; Resource allocation graphs consist of vertices V and edges E.

V P Rj= ; Vertices V can be processes P or Resource types R.

with processes , ,P P Pn1 f= " ,
and resources types ,R R Rk1 f= " ,

E E E Er ac j j= ; Edges E can be “claims” Ec, “requests” Er or “assignments” Ea

with claims ,E P Rc i j" f= $.

requests ,E P Ri jr " f= $.

and assignments ,E R Pa j i" f= $.

Note: any resource type Rj can have more than one instance of a resource.

Rj

holds

Rj

requests

Rj

claims

Pi

Pi

Pi

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 428 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

 Two process, reverse allocation deadlock:

R1

P1 P2

R2

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 429 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

 No circular dependency no deadlock:

R1 R3

P1 P2 P3

R2

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 430 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

 Two circular dependencies deadlock:
P R P R P R P1 1 2 3 3 2 1" " " " " "

as well as: P R P R P2 3 3 2 2" " " "

Derived rule:
If some processes are deadlocked then there
are cycles in the resource allocation graph.

R1 R3

P1 P2 P3

R2

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 431 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Deadlocks

Edge Chasing
(for the distributed version see Chandy, Misra & Haas)

6blocking processes:
 Send a probe to all requested yet unassigned resources con-
taining ids of: [the blocked, the sending, the targeted node].

6nodes on probe reception:
 Propagate the probe to all processes holding the critical
resources or to all requested yet unassigned resources –
while updating the second and third entry in the probe.

7a process receiving its own probe:
(blocked-id = targeted-id)

 Circular dependency detected.

R1 R3

P1 P2 P3

R2

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 432 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

 Knowledge of claims:

Claims are potential future requests which have no blocking ef-
fect on the claiming process – while actual requests are blocking.

R1 R3

P1 P2 P3

R2

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 433 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

 Assignment of resources such that
circular dependencies are avoided:

R1 R3

P1 P2 P3

R2

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 434 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Earlier derived rule:
If some processes are deadlocked

then there are cycles in the resource allocation graph.

 Reverse rule for multiple instances:
If there are cycles in the resource allocation graph

and there are multiple instances per resource
then the involved processes are potentially deadlocked.

 Reverse rule for single instances:
If there are cycles in the resource allocation graph

and there is exactly one instance per resource
then the involved processes are deadlocked.

R1 R3

P1 P2 P3

R2

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 435 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Reverse rule for single instances:
If there are cycles in the resource allocation graph

and there is exactly one instance per resource
then the involved processes are deadlocked.

 Actual deadlock identifi ed

R1

P1 P2

R2

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 436 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Reverse rule for multiple instances:
If there are cycles in the resource allocation graph

and there are multiple instances per resource
then the involved processes are potentially deadlocked.

 Potential deadlock identifi ed

R1 R3

P1 P2 P3

R2

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 437 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Reverse rule for multiple instances:
If there are cycles in the resource allocation graph

and there are multiple instances per resource
then the involved processes are potentially deadlocked.

 Potential deadlock identifi ed
– yet clearly not an actual deadlock here

R1 R3

P1 P2 P3

R2

P4

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 438 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

How to detect actual deadlocks
in the general case?
(multiple instances per resource)

R1 R3

P1 P2 P3

R2

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 439 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Deadlocks

Banker’s Algorithm
There are processes { , , }P P Pi n1 f! and resource types { , , }R R Rj m1 f! and data structures:

• Allocated [i, j]

 the number of resources of type j currently allocated to process i.
• Free [j]

 the number of currently available resources of type j.
• Claimed [i, j]

 the number of resources of type j required by process i eventually.
• Requested [i, j]

 the number of currently requested resources of type j by process i.
• Completed [i]

 boolean vector indicating processes which may complete.
• Simulated_Free [j]

 number of available resources assuming that complete processes de-allocate their resources.

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 440 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Deadlocks

Banker’s Algorithm

1. Simulated_Free % Free; 6i: Completed [i] % False;

2. While 7i: JCompleted [i]
 and 6j: Requested [i, j] < Simulated_Free [j] do:

 6j: Simulated_Free [j] % Simulated_Free [j] + Allocated [i, j];
 Completed [i] % True;

3. If 6i: Completed [i] then the system is currently deadlock-free!
else all processes i with JCompleted [i] are involved in a deadlock!.

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 441 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Deadlocks

Banker’s Algorithm

1. Simulated_Free % Free; 6i: Completed [i] % False;

2. While 7i: JCompleted [i]
 and 6j: Claimed [i, j] < Simulated_Free [j] do:

 6j: Simulated_Free [j] % Simulated_Free [j] + Allocated [i, j];
 Completed [i] % True;

3. If 6i: Completed [i] then the system is safe!

A safe system is a system in which future deadlocks can be
avoided assuming the current set of available resources.

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 442 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Deadlocks

Banker’s Algorithm
Check potential future system safety by simulating a granted request:

(Deadlock avoidance)

if (Request < Claimed) and (Request < Free) then
 Free := Free - Request;
 Claimed := Claimed - Request;
 Allocated := Allocated + Request;

 if System_is_safe (checked by e.g. Banker’s algorithm) then

 Grant request
 else

 Restore former system state: (Free, Claimed, Allocated)
 end if;
end if;

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 443 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Deadlocks

Distributed deadlock detection
Observation: Deadlock detection methods like Banker’s Algorithm are too communication
intensive to be commonly applied in full and at high frequency in a distributed system.

 Therefore a distributed version needs to:

 Split the system into nodes of reasonable locality
(keeping most processes close to the resources they require).

 Organize the nodes in an adequate topology (e.g. a tree).

 Check for deadlock inside nodes
with blocked resource requests and detect/avoid local deadlock immediately.

 Exchange resource status information
between nodes occasionally and detect global deadlocks eventually.

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 444 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Deadlocks

Deadlock recovery

A deadlock has been detected now what?

Breaking the circular dependencies can be done by:

 Either pre-empt an assigned resource which is part of the deadlock.

 or stop a process which is part of the deadlock.

Usually neither choice can be implemented ‘gracefully’ and deals only with the symptoms.

Deadlock recovery does not address the reason for the problem!
(i.e. the deadlock situation can re-occur again immediately)

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 445 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Deadlocks

Deadlock strategies:

• Deadlock prevention
System prevents deadlocks by its structure or by full verifi cation

 The best approach if applicable.

• Deadlock avoidance
System state is checked with every resource assignment.

 More generally applicable, yet computationally very expensive.

• Deadlock detection & recovery
Detect deadlocks and break them in a ‘coordinated’ way.

 Less computationally expensive (as lower frequent), yet usually ‘messy’.

• Ignorance & random kill
Kill or restart unresponsive processes, power-cycle the computer, …

 More of a panic reaction than a method.

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 446 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Atomic & idempotent operations

Atomic operations

Definitions of atomicity:

An operation is atomic if the processes performing it …
• (by ‘awareness’) … are not aware of the existence of any other active

process, and no other active process is aware of the activity of the
processes during the time the processes are performing the atomic operation.

• (by communication) … do not communicate with other
processes while the atomic operation is performed.

• (by means of states) … cannot detect any outside state change and do not
reveal their own state changes until the atomic operation is complete.

Short:

An atomic operation can be considered to be
indivisible and instantaneous.

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 447 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Atomic & idempotent operations

Atomic operations

time0 5 10 15 20 25 30 35 40 45

Atomic Operations

Commitment times

5 1

Fl
o

w
 o

f t
as

ks

Indivisible
phases

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 448 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Atomic & idempotent operations

Atomic operations

Important implications:

1. An atomic operation is either performed in full or not at all.

2. A failed atomic operation cannot have any impact on its
surroundings (must keep or re-instantiate the full initial state).

3. If any part of an atomic operation fails,
then the whole atomic operation is declared failed.

4. All parts of an atomic operations (including already completed parts)
must be prepared to declare failure
until the fi nal global commitment.

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 449 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Atomic & idempotent operations

Idempotent operations

Definition of idempotent operations:

An operation is idempotent if the observable effect of the oper-
ation are identical for the cases of executing the operation:

• once,

• multiple times,

• infi nitely often.

Observations:

• Idempotent operations are often atomic, but do not need to be.

• Atomic operations do not need to be idempotent.

• Idempotent operations can ease the requirements for synchronization.

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 450 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Reliability, failure & tolerance

‘Terminology of failure’ or ‘Failing terminology’?

Reliability ::= measure of success
 with which a system conforms to its specifi cation.
 ::= low failure rate.

Failure ::= a deviation of a system from its specifi cation.

Error ::= the system state which leads to a failure.

Fault ::= the reason for an error.

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 451 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Reliability, failure & tolerance

Faults during different phases of design

• Inconsistent or inadequate specifi cations
 frequent source for disastrous faults

• Software design errors
 frequent source for disastrous faults

• Component & communication system failures
 rare and mostly predictable

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 452 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Reliability, failure & tolerance

Faults in the logic domain

• Non-termination / -completion
Systems ‘frozen’ in a deadlock state, blocked for missing input, or in an infi nite loop

 Watchdog timers required to handle the failure

• Range violations and other inconsistent states
 Run-time environment level exception handling required to handle the failure

• Value violations and other wrong results
 User-level exception handling required to handle the failure

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 453 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Reliability, failure & tolerance

Faults in the time domain

• Transient faults
 Single ‘glitches’, interference, … very hard to handle

• Intermittent faults
 Faults of a certain regularity … require careful analysis

• Permanent faults
 Faults which stay … the easiest to fi nd

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 454 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Reliability, failure & tolerance

Observable failure modes

Failure modes

Time domain

fail
silent

fail
stop

fail
controlled

fail
uncontrolled

Value
error

Constraint
error

fail
never

too
early

too
late

never
(omission)

nnevev rr
(oooommimmm ssssiooonnn)n

never
(omission)

Value domain

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 455 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Reliability, failure & tolerance

Fault prevention, avoidance, removal, …

and / or

 Fault tolerance

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 456 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Reliability, failure & tolerance

Fault tolerance

• Full fault tolerance
the system continues to operate in the presence of ‘foreseeable’ error conditions ,

without any signifi cant loss of functionality or performance
— even though this might reduce the achievable total operation time.

• Graceful degradation (fail soft)
the system continues to operate in the presence of ‘foreseeable’ error conditions,

while accepting a partial loss of functionality or performance.

• Fail safe
the system halts and maintains its integrity.

 Full fault tolerance is not maintainable for an infi nite operation time!

 Graceful degradation might have multiple levels of reduced functionality.

Safety & Liveness

© 2015 Uwe R. Zimmer, The Australian National University page 457 of 700 (chapter 6: “Safety & Liveness” up to page 457)

Summary

Safety & Liveness

• Liveness
• Fairness

• Safety
• Deadlock detection

• Deadlock avoidance

• Deadlock prevention

• Atomic & Idempotent operations
• Definitions & implications

• Failure modes
• Definitions, fault sources and basic fault tolerance

7
Architectures

Uwe R. Zimmer - The Australian National University

Concurrent & Distributed Systems 2015

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 459 of 700 (chapter 7: “Architectures” up to page 568)

References

[Bacon98]
J. Bacon
Concurrent Systems
1998 (2nd Edition) Addison Wesley Longman Ltd, ISBN 0-201-17767-6

 [Stallings2001]
 Stallings, William
 Operating Systems
 Prentice Hall, 2001

[Intel2010]
Intel® 64 and IA-32 Architectures Optimization Reference Manual
http://www.intel.com/products/processor/manuals/

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 460 of 700 (chapter 7: “Architectures” up to page 568)

In this chapter

Hardware architectures:

 From simple logic to multi-core CPUs

 Concurrency on different levels

Software architectures:

 Languages of Concurrency

 Operating systems and libraries

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 461 of 700 (chapter 7: “Architectures” up to page 568)

Layers of abstractionAbstraction Layer Form of concurrency
Application level

(user interface, specifi c functionality...)

Distributed systems, servers, web services,
“multitasking” (popular understanding)

Language level
(data types, tasks, classes, API, ...)

Process libraries, tasks/threads (language), syn-
chronisation, message passing, intrinsic, ...

Operating system
(HAL, processes, virtual memory)

OS processes/threads, signals, events,
multitasking, SMP, virtual parallel machines,...

CPU / instruction level
(assembly instructions)

Logically sequential: pipelines, out-of-order, etc.
logically concurrent: multicores, interrupts, etc.

Device / register level
(arithmetic units, registers,...)

Parallel adders, SIMD, multiple execution units,
caches, prefetch, branch prediction, etc.

Logic gates
(‘and’, ‘or’, ‘not’, fl ip-fl op, etc.)

Inherently massively parallel,
synchronised by clock; or: asynchronous logic

Digital circuitry
(gates, buses, clocks, etc.)

Multiple clocks, peripheral hardware, memory, ...

Analog circuitry
(transistors, capacitors, ...)

Continuous time and inherently concurrent

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 462 of 700 (chapter 7: “Architectures” up to page 568)

Controllable Switches & Ratios
as transistors, relays, vacuum tubes, valves, etc.

Logic - the basic building blocks

er 7: “Architectures” up to page 568)

Difference Engine

Charles Babbage 1822

First transistor

John Bardeen and Walter Brattain 1947

Strandbeest

Theo Jansen 1990
Antikythera Mechanism

Greek 150-100 BC-

Credit: Wikipedia

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 463 of 700 (chapter 7: “Architectures” up to page 568)

Logic - the basic building blocks for digital computers

Constructing logic gates – for instance NAND in CMOS:

NAND
A
B

Q

A

B

Q

PMOS

NMOS

A B & Q
0 0 & 1
0 1 & 1
1 0 & 1
1 1 & 0

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 464 of 700 (chapter 7: “Architectures” up to page 568)

Logic - the basic building blocks for digital computers

Constructing logic gates – for instance NAND in CMOS:

… and subsequently all other logic gates:

NAND

NAND NAND

A Q

NAND

NAND

NAND

Q

Q

A
B

A

B

NAND

NAND

NAND

NANDNAND

NAND

NAND

NAND

A

B

Q

NOTA Q

OR Q
A

B

Q
A

B
AND

XOR
A

B
Q

NAND
A
B

Q

A

B

Q

PMOS

NMOS

A B & Q
0 0 & 1
0 1 & 1
1 0 & 1
1 1 & 0

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 465 of 700 (chapter 7: “Architectures” up to page 568)

Logic - the basic building blocks

Half adder: Full adder:

Ripple carry adder:

A XOR

ANDB

S

C

Ai

XOR

AND

Bi

XOR

AND

OR

Si

Ci-1 Ci

A0

XOR

AND

B0

S0

XOR

AND

XOR

AND

OR

S1

A1 B1

XOR

AND

XOR

AND

OR

A2 B2

S2

C

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 466 of 700 (chapter 7: “Architectures” up to page 568)

Logic - the basic building blocks

Basic Flip-Flops

Q

Q

D Q

Q

NAND Q

NAND Q

NAND

NAND

NAND

NAND

NAND

NAND

D

C

Q

Q

C

S

R

S

R

NAND

NAND

Q

Q

NAND

NAND

NAND

NAND

NAND

NAND

NOT

S

R

J

K

C

J

K

Q

Q

S

R

S

R

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 467 of 700 (chapter 7: “Architectures” up to page 568)

Logic - the basic building blocks

Q

Q

D Q

Q

S

R

J

K

Q

Q

S

R

S

R

J

K

Q

Q

S

R

D
C

T Q

Q

J

K

Q

Q

S

R

T
C

T Q

Q

D Q

Q

XORT
C

J Q

Q

D Q

QCK

AND

OR

AND

J

K

S

R

S

R

T S

R

T S

R

T S

R

T S

R

T S

R

T S

R

T S

R

T S

R

1

C

S0 S1 S2 S3 S4 S5 S6 S7

R

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

JK- and D- Flip-Flops as universal Flip-Flops

Counting register:

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 468 of 700 (chapter 7: “Architectures” up to page 568)

Processor Architectures

A simple CPU

• Decoder/Sequencer
Can be a machine in itself which breaks CPU
instructions into concurrent micro code.

• Execution Unit / Arithmetic-Logic-Unit (ALU)
A collection of transformational logic.

• Memory

• Registers
Instruction pointer, stack pointer,
general purpose and specialized registers

• Flags
Indicating the states of the
latest calculations.

• Code/Data management
Fetching, Caching, Storing

 ALU

M
em

or
y

Sequencer
Decoder

Code management

Registers

IP

SP

Flags

Data management

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 469 of 700 (chapter 7: “Architectures” up to page 568)

Processor Architectures

Interrupts

• One or multiple lines wired
directly into the sequencer

 Required for:
Pre-emptive scheduling, Timer driven actions,
Transient hardware interactions, …

 Usually preceded by an external logic
(“interrupt controller”) which accumu-
lates and encodes all external requests.

On interrupt (if unmasked):

• CPU stops normal sequencer fl ow.

• Lookup of interrupt handler’s address

• Current IP and state pushed onto stack.

• IP set to interrupt handler.

 ALU

M
em

or
y

Sequencer
Decoder

Code management

Registers

IP

SP

Flags

Data management

Int.

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 470 of 700 (chapter 7: “Architectures” up to page 568)

Context switch

Return address

Context

Parameters

Global variables

Local variables

Return address

Context

Parameters

Local variables

FP

FP

Base

Stack

Process 1

Interrupt handler

Code

………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………

IP

Return address

Context

Parameters

Global variables

Local variables

Return address

Context

Parameters

Local variables

FP

FP

Base

PID SP

PCB
…

Stack

Process 2

Code

………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………

… …

IP
Flags

Registers

Context-
switch-
variables

PID

PCB
… … …

SP

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 471 of 700 (chapter 7: “Architectures” up to page 568)

Context switch

Return address

Context

Parameters

Global variables

Local variables

Return address

Context

Parameters

Local variables

FP

FP

Base

SP

Stack

…Process 1

Interrupt handler

Code

………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………

Return address

Context

Parameters

Global variables

Local variables

Return address

Context

Parameters

Local variables

FP

FP

Base

PID SP

PCB
…

Stack

Process 2

Code

………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………

… …

IP
Flags

PID

PCB
… … …

IP
Flags

Registers

Context-
switch-
variables

IP

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 472 of 700 (chapter 7: “Architectures” up to page 568)

Context switch

Return address

Context

Parameters

Global variables

Local variables

Return address

Context

Parameters

Local variables

FP

FP

Base

SP

Stack

Push registers
Declare local variables

Process 1

Interrupt handler

Code

………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………

Return address

Context

Parameters

Global variables

Local variables

Return address

Context

Parameters

Local variables

FP

FP

Base

PID SP

PCB
…

Stack

Process 2

Code

………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………

… …

IP
Flags

PID

PCB
… … …

IP
Flags

Registers

Context-
switch-
variables

IP

Registers

Context-
switch-
variables

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 473 of 700 (chapter 7: “Architectures” up to page 568)

Context switch

Return address

Context

Parameters

Global variables

Local variables

Return address

Context

Parameters

Local variables

FP

FP

Base

SP

Stack

Push registers
Declare local variables
Store SP to PCB 1

Process 1

Interrupt handler

Code

………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………

Return address

Context

Parameters

Global variables

Local variables

Return address

Context

Parameters

Local variables

FP

FP

Base

PID SP

PCB
…

Stack

Process 2

Code

………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………

… …

IP
Flags

PID SP

PCB
… … …

IP
Flags

Registers

Context-
switch-
variables

IP

Registers

Context-
switch-
variables

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 474 of 700 (chapter 7: “Architectures” up to page 568)

Context switch

Return address

Context

Parameters

Global variables

Local variables

Return address

Context

Parameters

Local variables

FP

FP

Base

SP

Stack

Push registers
Declare local variables
Store SP to PCB 1
Scheduler

Process 1

Interrupt handler

Code

………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………

Return address

Context

Parameters

Global variables

Local variables

Return address

Context

Parameters

Local variables

FP

FP

Base

PID SP

PCB
…

Stack

Process 2

Code

………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………

… …

IP
Flags

PID SP

PCB
… … …

IP
Flags

Registers

Context-
switch-
variables

IP

Registers

Context-
switch-
variables

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 475 of 700 (chapter 7: “Architectures” up to page 568)

Context switch

Return address

Context

Parameters

Global variables

Local variables

Return address

Context

Parameters

Local variables

FP

FP

Base

Stack

Push registers
Declare local variables
Store SP to PCB 1
Scheduler
Load SP from PCB 2

Process 1

Interrupt handler

Code

………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………

Return address

Context

Parameters

Global variables

Local variables

Return address

Context

Parameters

Local variables

FP

FP

Base

PID

PCB
…

Stack

Process 2

Code

………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………

… …

IP
Flags

PID SP

PCB
… … …

IP
Flags

Registers

Context-
switch-
variables

IP

Registers

Context-
switch-
variables

SP

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 476 of 700 (chapter 7: “Architectures” up to page 568)

Context switch

Return address

Context

Parameters

Global variables

Local variables

Return address

Context

Parameters

Local variables

FP

FP

Base

Stack

Push registers
Declare local variables
Store SP to PCB 1
Scheduler
Load SP from PCB 2
Remove local variables

Process 1

Interrupt handler

Code

………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………

Return address

Context

Parameters

Global variables

Local variables

Return address

Context

Parameters

Local variables

FP

FP

Base

PID

PCB
…

Stack

Process 2

Code

………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………

… …

IP
Flags

PID SP

PCB
… … …

IP
Flags

IP

Registers

Context-
switch-
variables

SP
Registers

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 477 of 700 (chapter 7: “Architectures” up to page 568)

Context switch

Return address

Context

Parameters

Global variables

Local variables

Return address

Context

Parameters

Local variables

FP

FP

Base

Stack

Push registers
Declare local variables
Store SP to PCB 1
Scheduler
Load SP from PCB 2
Remove local variables
Pop registers

Process 1

Interrupt handler

Code

………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………

Return address

Context

Parameters

Global variables

Local variables

Return address

Context

Parameters

Local variables

FP

FP

Base

PID

PCB
…

Stack

Process 2

Code

………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………

… …

IP
Flags

PID SP

PCB
… … …

IP
Flags

IP

Registers

Context-
switch-
variables

SP

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 478 of 700 (chapter 7: “Architectures” up to page 568)

Context switch

Return address

Context

Parameters

Global variables

Local variables

Return address

Context

Parameters

Local variables

FP

FP

Base

Stack

Push registers
Declare local variables
Store SP to PCB 1
Scheduler
Load SP from PCB 2
Remove local variables
Pop registers
Return from interrupt

Process 1

Interrupt handler

Code

………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………

Return address

Context

Parameters

Global variables

Local variables

Return address

Context

Parameters

Local variables

FP

FP

Base

PID

PCB
…

Stack

Process 2

Code

………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………………
………
………
………
………

… …

IP
Flags

PID SP

PCB
… … …

IP

Registers

Context-
switch-
variables

SP

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 479 of 700 (chapter 7: “Architectures” up to page 568)

Processor Architectures

Pipeline
Some CPU actions are naturally sequential
(e.g. instructions need to be fi rst loaded, then
decoded before they can be executed).

More fi ne grained sequences can
be introduced by breaking CPU
instructions into micro code.

 Overlapping those sequences in time
will lead to the concept of pipelines.

 Same latency, yet higher throughput.

 (Conditional) branches
might break the pipelines

 Branch predictors become essential.

 ALU

M
em

or
y

Sequencer
Decoder

Code management

Registers

IP

SP

Flags

Data management

ennnnttttt

Sequencer
Decoder

Code management

Data managementData management

SeInt.

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 480 of 700 (chapter 7: “Architectures” up to page 568)

Processor Architectures

Parallel pipelines
Filling parallel pipelines
(by alternating incoming commands between
pipelines) may employ multiple ALU’s.

 (Conditional) branches might
again break the pipelines.

 Interdependencies might limit
the degree of concurrency.

 Same latency, yet even higher throughput.

 Compilers need to be aware of the options. ALU

M
em

or
y

Sequencer
Decoder

Code management

Registers

IP

SP

Flags

Data management

Sequencer
Decoder

Code management

Data managementData management

Fla

 AAAAALLUUU

ererr

tt

 ALU ALU

Data managementData management

SeInt.

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 481 of 700 (chapter 7: “Architectures” up to page 568)

Processor Architectures

Out of order execution
Breaking the sequence inside each pipe-
line leads to ‘out of order’ CPU designs.

 Replace pipelines with hardware scheduler.

 Results need to be
“re-sequentialized” or possibly discarded.

 “Conditional branch prediction” executes
the most likely branch or multiple branches.

 Works better if the presented code
sequence has more independent
instructions and fewer conditional branches.

 This hardware will require (extensive)
code optimization to be fully utilized.

 ALU

M
em

or
y

Sequencer
Decoder

Code management

Registers

IP

SP

Flags

Data management

Fla

 AAAAALLUU

ee

 ALU ALU

Data managementData management

eeCode management

Sequencer
Decoder

Data managementData management

SeInt.

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 482 of 700 (chapter 7: “Architectures” up to page 568)

Processor Architectures

SIMD ALU units
Provides the facility to apply the same in-
struction to multiple data concurrently.
Also referred to as “vector units”.

Examples: Altivec, MMX, SSE[2|3|4], …

 Requires specialized compilers
or programming languages with
implicit concurrency.

GPU processing
Graphics processor as a vector unit.

 Unifying architecture languages are
used (OpenCL, CUDA, GPGPU).

 ALU

M
em

or
y

Sequencer
Decoder

Code management

Registers

IP

SP

Flags

Data managementegee

LUALAALUALLUALAAAA UUUUUAAAAAAAAA

eeemmmmmmmenttmentttmmeennttttttttttttttttttttttt

 ALU ALU ALU ALU

Int.

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 483 of 700 (chapter 7: “Architectures” up to page 568)

Processor Architectures

Hyper-threading
Emulates multiple virtual CPU cores
by means of replication of:

• Register sets

• Sequencer

• Flags

• Interrupt logic
while keeping the “expensive” resources
like the ALU central yet accessible by
multiple hyper-threads concurrently.

 Requires programming languages with
implicit or explicit concurrency.

Examples: Intel Pentium 4, Core i5/i7, Xeon,
Atom, Sun UltraSPARC T2 (8 threads per core)

 ALU

M
em

or
y

Sequencer
Decoder

Code management

Registers

IP

SP

Flags

Data management

egistersRRegisRRegi

SSPSPSPPPPPP

Cod

IIPPPIIIPIIPIIPPIIPIPIIPIPIIPIPIPIPI

Data

SSSPPP

ggssggFFFFFFFFFlllllllllllllaaaaagggsgFllaaaggggggsssssgggggggssgggFFFFFFFllllllllaaaaaaaagggggFlaaggg

Sequencer
Decoder

FlagsFlagsRegisters

IP

SP

Registers

IP

SP

Sequencer
Decoder

Int.

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 484 of 700 (chapter 7: “Architectures” up to page 568)

Processor Architectures

Multi-core CPUs
Full replication of multiple CPU cores
on the same chip package.

• Often combined with hyper-thread-
ing and/or multiple other means (as
introduced above) on each core.

• Cleanest and most explicit implementation
of concurrency on the CPU level.

 Requires synchronized atomic operations.

 Requires programming languages with
implicit or explicit concurrency.

Historically the introduction of multi-core CPUs
stopped the “GHz race” in the early 2000’s.

 ALU

M
em

or
y

Sequencer
Decoder

Code management

Registers

IP

SP

Flags

Data management

egistersRRegisRRegi

SSPSPSPPPPPP

Cod

IIIIPPPIPPIPPPPIIPPIIIIIPIPPIIIPPIIPIPI

Data

SSSPPP

ggssggFFFFFFFFFllllllllllllllllaaaaagggsgFlllaaaggggggsssssgggggggssgggFFFFFllllllaaaaaagggggFlaaggg

Sequencer
Decoder

FlagsFlagsRegisters

IP

SP

Registers

IP

SP

Sequencer
Decoder

Int.

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 485 of 700 (chapter 7: “Architectures” up to page 568)

Processor Architectures

Virtual memory
Translates logical memory addresses
into physical memory addresses
and provides memory protection features.

• Does not introduce concurrency by itself.

 Is still essential for concurrent programming
as hardware memory protection
guarantees memory integrity for
individual processes / threads.

 ALU

M
em

or
y

Sequencer
Decoder

Code management

Registers

IP

SP

Flags

Data management

Ph
ys

ic
al

 m
em

or
y

V
ir

tu
al

 m
em

or
y

Int.

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 486 of 700 (chapter 7: “Architectures” up to page 568)

Alternative Processor Architectures: Parallax Propeller

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 487 of 700 (chapter 7: “Architectures” up to page 568)

Alternative Processor Architectures: Parallax Propeller (2006)

Low cost 32 bit processor ($8)

8 cores with 2 kB local memory

40 kB shared memory

No interrupts!
8 semaphores

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 488 of 700 (chapter 7: “Architectures” up to page 568)

Alternative Processor Architectures: IBM Cell processor (2001)

theoretical 25.6 GFLOPS

at 3.2 GHz

8 cores for specialized high-
bandwidth fl oating point

operations and 128 bit registers

Multiple interconnect topologies

64 bit

PowerPC core

Cache

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 489 of 700 (chapter 7: “Architectures” up to page 568)

Multi-CPU systems

Scaling up:

• Multi-CPU on the same memory
multiple CPUs on same motherboard and memory bus, e.g. servers, workstations

• Multi-CPU with high-speed interconnects
various supercomputer architectures, e.g. Cray XE6:

• 12-core AMD Opteron, up to 192 per cabinet (2304 cores)

• 3D torus interconnect (160 GB/sec capacity, 48 ports per node)

• Cluster computer (Multi-CPU over network)
multiple computers connected by network interface,

e.g. Sun Constellation Cluster at ANU:

• 1492 nodes, each: 2x Quad core Intel Nehalem, 24 GB RAM

• QDR Infi niband network, 2.6 GB/sec

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 490 of 700 (chapter 7: “Architectures” up to page 568)

Vector Machines

Vectorization

a v a
x
y
z

a x
a y
a z

$ $

$

$

$

= =f fp p

type Real_Precision = Float

type Scalar = Real_Precision
type Vector = [Real_Precision]

scale :: Scalar -> Vector -> Vector
scale scalar vector = map (scalar *) vector

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 491 of 700 (chapter 7: “Architectures” up to page 568)

Vector Machines

Vectorization

a v a
x
y
z

a x
a y
a z

$ $

$

$

$

= =f fp p

type Real_Precision = Float

type Scalar = Real_Precision
type Vector = [Real_Precision]

scale :: Scalar -> Vector -> Vector
scale scalar vector = map (scalar *) vector

Executed sequentially.

Potentially concurrent, yet:

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 492 of 700 (chapter 7: “Architectures” up to page 568)

Vector Machines

Vectorization

a v a
x
y
z

a x
a y
a z

$ $

$

$

$

= =f fp p

import Control.Parallel.Strategies

type Real_Precision = Float

type Scalar = Real_Precision
type Vector = [Real_Precision]

scale :: Scalar -> Vector -> Vector
scale scalar vector = parMap rpar (scalar *) vector

Executed in parallel.

This may be faster or slower
than a sequential execution.

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 493 of 700 (chapter 7: “Architectures” up to page 568)

Vector Machines

Vectorization

a v a
x
y
z

a x
a y
a z

$ $

$

$

$

= =f fp p

 type Real is digits 15;
 type Vectors is array (Positive range <>) of Real;

 function Scale (Scalar : Real; Vector : Vectors) return Vectors is

 Scaled_Vector : Vectors (Vector’Range);

 begin
 for i in Vector’Range loop
 Scaled_Vector (i) := Scalar * Vector (i);
 end loop;
 return Scaled_Vector;
 end Scale;

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 494 of 700 (chapter 7: “Architectures” up to page 568)

Vector Machines

Vectorization

a v a
x
y
z

a x
a y
a z

$ $

$

$

$

= =f fp p

 type Real is digits 15;
 type Vectors is array (Positive range <>) of Real;

 function Scale (Scalar : Real; Vector : Vectors) return Vectors is

 Scaled_Vector : Vectors (Vector’Range);

 begin
 for i in Vector’Range loop
 Scaled_Vector (i) := Scalar * Vector (i);
 end loop;
 return Scaled_Vector;
 end Scale;

Translates into
CPU-level vector operations

494 f 700 (h t 7 “A hit t ” t 568)0

Combined with
in-lining, loop unrolling and caching

this is as fast as a single CPU will get.

Buzzword collection:
AltiVec, SPE, MMX, SSE,

NEON, SPU, AVX, …

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 495 of 700 (chapter 7: “Architectures” up to page 568)

Vector Machines

Vectorization

a v a
x
y
z

a x
a y
a z

$ $

$

$

$

= =f fp p

const Index = {1 .. 100000000},
 Vector_1 : [Index] real = 1.0,

 Scale : real = 5.1,
 Scaled : [Vector] real = Scale * Vector_1;

Function is
“promoted”

Vecto

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 496 of 700 (chapter 7: “Architectures” up to page 568)

Vector Machines

Vectorization

a v a
x
y
z

a x
a y
a z

$ $

$

$

$

= =f fp p

const Index = {1 .. 100000000},
 Vector_1 : [Index] real = 1.0,

 Scale : real = 5.1,
 Scaled : [Vector] real = Scale * Vector_1;

Translates into CPU-level vector operations
as well as multi-core or

fully distributed operations

Function is
“promoted”

Vecto

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 497 of 700 (chapter 7: “Architectures” up to page 568)

Vector Machines

Reduction

v v
x
y
z

x
y
z

x x y y z z1 2

1

1

1

2

2

2

1 2 1 2 1 2& & / /= = = = =f f ^ ^ ^p p h h h

type Real_Precision = Float

type Vector = [Real_Precision]

equal :: Vector -> Vector -> Bool
equal v_1 v_2 = foldr (&&) True $ zipWith (==) v_1 v_2

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 498 of 700 (chapter 7: “Architectures” up to page 568)

Vector Machines

Reduction

v v
x
y
z

x
y
z

x x y y z z1 2

1

1

1

2

2

2

1 2 1 2 1 2& & / /= = = = =f f ^ ^ ^p p h h h

type Real_Precision = Float

type Vector = [Real_Precision]

equal :: Vector -> Vector -> Bool
equal v_1 v_2 = foldr (&&) True $ zipWith (==) v_1 v_2

Executed lazy sequentially.E d l

Potentially concurrent, yet:

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 499 of 700 (chapter 7: “Architectures” up to page 568)

Vector Machines

Reduction

v v
x
y
z

x
y
z

x x y y z z1 2

1

1

1

2

2

2

1 2 1 2 1 2& & / /= = = = =f f ^ ^ ^p p h h h

type Real_Precision = Float

type Vector = [Real_Precision]

equal :: Vector -> Vector -> Bool
equal = (==)

Executed lazy sequentially.E d l

Potentially concurrent, yet:

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 500 of 700 (chapter 7: “Architectures” up to page 568)

Vector Machines

Reduction

v v
x
y
z

x
y
z

x x y y z z1 2

1

1

1

2

2

2

1 2 1 2 1 2& & / /= = = = =f f ^ ^ ^p p h h h

type Real is digits 15;

type Vectors is array (Positive range <>) of Real;

function ”=” (Vector_1, Vector_2 : Vectors) return Boolean is
 (for all i in Vector_1’Range => Vector_1 (i) = Vector_2 (i));

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 501 of 700 (chapter 7: “Architectures” up to page 568)

Vector Machines

Reduction

v v
x
y
z

x
y
z

x x y y z z1 2

1

1

1

2

2

2

1 2 1 2 1 2& & / /= = = = =f f ^ ^ ^p p h h h

type Real is digits 15;

type Vectors is array (Positive range <>) of Real;

function ”=” (Vector_1, Vector_2 : Vectors) return Boolean is
 (for all i in Vector_1’Range => Vector_1 (i) = Vector_2 (i));

Translates into
CPU-level vector operations

page 501 of 700 (chapter 7: “Architectures” up to page 568)0

/-chain is evaluated lazy sequentially.

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 502 of 700 (chapter 7: “Architectures” up to page 568)

Vector Machines

Reduction

v v
x
y
z

x
y
z

x x y y z z1 2

1

1

1

2

2

2

1 2 1 2 1 2& & / /= = = = =f f ^ ^ ^p p h h h
type Real is digits 15;

type Vectors is array (Positive range <>) of Real;

function ”=” (Vector_1, Vector_2 : Vectors) return Boolean is (Vector_1 = Vector_2);

Translates into
CPU-level vector operations

page 502 of 700 (chapter 7: “Architectures” up to page 568)0

/-chain is evaluated lazy sequentially.

Infi nite
recursion

=

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 503 of 700 (chapter 7: “Architectures” up to page 568)

Vector Machines

Reduction

v v
x
y
z

x
y
z

x x y y z z1 2

1

1

1

2

2

2

1 2 1 2 1 2& & / /= = = = =f f ^ ^ ^p p h h h

type Real is digits 15;

type Vectors is array (Positive range <>) of Real;

function Equal (Vector_1, Vector_2 : Vectors) return Boolean is (Vector_1 = Vector_2);

Translates into
CPU-level vector operations

page 503 of 700 (chapter 7: “Architectures” up to page 568)0

/-chain is evaluated lazy sequentially.

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 504 of 700 (chapter 7: “Architectures” up to page 568)

Vector Machines

Reduction

v v
x
y
z

x
y
z

x x y y z z1 2

1

1

1

2

2

2

1 2 1 2 1 2& & / /= = = = =f f ^ ^ ^p p h h h

type Real is digits 15;

type Vectors is array (Positive range <>) of Real;

function Equal (Vector_1, Vector_2 : Vectors) return Boolean renames ”=”;

Translates into
CPU-level vector operations

page 504 of 700 (chapter 7: “Architectures” up to page 568)0

/-chain is evaluated lazy sequentially.

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 505 of 700 (chapter 7: “Architectures” up to page 568)

Vector Machines

Reduction

v v
x
y
z

x
y
z

x x y y z z1 2

1

1

1

2

2

2

1 2 1 2 1 2& & / /= = = = =f f ^ ^ ^p p h h h

type Real is digits 15;

type Vectors is array (Positive range <>) of Real;

function ”=” (Vector_1, Vector_2 : Vectors) return Boolean is
 (for all i in Vector_1’Range => Vector_1 (i) = Vector_2 (i));

Translates into
CPU-level vector operations

page 505 of 700 (chapter 7: “Architectures” up to page 568)0

/-chain is evaluated lazy sequentially.

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 506 of 700 (chapter 7: “Architectures” up to page 568)

Vector Machines

Reduction

v v
x
y
z

x
y
z

x x y y z z1 2

1

1

1

2

2

2

1 2 1 2 1 2& & / /= = = = =f f ^ ^ ^p p h h h

const Index = {1 .. 100000000},
 Vector_1, Vector_2 : [Index] real = 1.0;

proc Equal (v1, v2) : bool
 {return && reduce (v1 == v2);}

Function is
“promoted”

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 507 of 700 (chapter 7: “Architectures” up to page 568)

Vector Machines

Reduction

v v
x
y
z

x
y
z

x x y y z z1 2

1

1

1

2

2

2

1 2 1 2 1 2& & / /= = = = =f f ^ ^ ^p p h h h
const Index = {1 .. 100000000},
 Vector_1, Vector_2 : [Index] real = 1.0;

proc Equal (v1, v2) : bool
 {return && reduce (v1 == v2);}

page 507 of 700 (chapter 7: “Architectures” up to page 568)0

Translates into CPU-level vector operations
as well as multi-core or

fully distributed operations

/-operations are
evaluated in a concurrent

divide-and-conquer
(binary tree) structure.

Function is
“promoted”

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 508 of 700 (chapter 7: “Architectures” up to page 568)

Vector Machines

Reduction

v v
x
y
z

x
y
z

x x y y z z1 2

1

1

1

2

2

2

1 2 1 2 1 2& & / /= = = = =f f ^ ^ ^p p h h h

const Index = {1 .. 100000000},
 Vector_1, Vector_2 : [Index] real = 1.0;

proc Equal (v1, v2) : bool
 {return v1 == v2;}

writeln (Equal (Vector_1, Vector_2));

Type mismatch

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 509 of 700 (chapter 7: “Architectures” up to page 568)

Vector Machines

General Data-parallelism

 px 1
1
5
1

1"

$

:

:

:

6 -

-

-

-

R

T

S
S
SS

V

X

W
W
WW

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 510 of 700 (chapter 7: “Architectures” up to page 568)

Vector Machines

General Data-parallelism

 px 1
1
5
1

1"

$

:

:

:

6 -

-

-

-

R

T

S
S
SS

V

X

W
W
WW

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 511 of 700 (chapter 7: “Architectures” up to page 568)

Vector Machines

General Data-parallelism

 px 1
1
5
1

1"

$

:

:

:

6 -

-

-

-

R

T

S
S
SS

V

X

W
W
WW

const Mask : [1 .. 3, 1 .. 3] real = ((0, -1, 0), (-1, 5, -1), (0, -1, 0));

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 512 of 700 (chapter 7: “Architectures” up to page 568)

Vector Machines

General Data-parallelism

 px 1
1
5
1

1"

$

:

:

:

6 -

-

-

-

R

T

S
S
SS

V

X

W
W
WW

const Mask : [1 .. 3, 1 .. 3] real = ((0, -1, 0), (-1, 5, -1), (0, -1, 0));

proc Unsharp_Mask (P, (i, j) : index (Image)) : real
 {return + reduce (Mask * P [i - 1 .. i + 1, j - 1 .. j + 1]);}

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 513 of 700 (chapter 7: “Architectures” up to page 568)

Vector Machines

General Data-parallelism

 px 1
1
5
1

1"

$

:

:

:

6 -

-

-

-

R

T

S
S
SS

V

X

W
W
WW

const Mask : [1 .. 3, 1 .. 3] real = ((0, -1, 0), (-1, 5, -1), (0, -1, 0));

proc Unsharp_Mask (P, (i, j) : index (Image)) : real
 {return + reduce (Mask * P [i - 1 .. i + 1, j - 1 .. j + 1]);}

const Sharpened_Picture = forall px in Image do Unsharp_Mask (Picture, px);

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 514 of 700 (chapter 7: “Architectures” up to page 568)

Vector Machines

General Data-parallelism

 px 1
1
5
1

1"

$

:

:

:

6 -

-

-

-

R

T

S
S
SS

V

X

W
W
WW

const Mask : [1 .. 3, 1 .. 3] real = ((0, -1, 0), (-1, 5, -1), (0, -1, 0));

proc Unsharp_Mask (P, (i, j) : index (Image)) : real
 {return + reduce (Mask * P [i - 1 .. i + 1, j - 1 .. j + 1]);}

const Sharpened_Picture = forall px in Image do Unsharp_Mask (Picture, px);

px 1
1
5
1

1"

$

:

:

:

6 -

-

-

-

R

T

S
RR

S
SS
SS

TT
SS
TTTT

SSSS

V

X

W
VV

W
WW
WW

XX
WW
XXXX

WWWW

Translates into CPU-level vector operations
as well as multi-core or

fully distributed operations

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 515 of 700 (chapter 7: “Architectures” up to page 568)

Vector Machines

General Data-parallelism "

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 516 of 700 (chapter 7: “Architectures” up to page 568)

Vector Machines

General Data-parallelism

Cellular automaton transitions from a state S into the next state Sl:
: ,S S c S c c r S c" + "6 ! =l l ^ h, i.e. all cells of a state

transition concurrently into new cells by following a rule r.

"

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 517 of 700 (chapter 7: “Architectures” up to page 568)

Vector Machines

General Data-parallelism

Cellular automaton transitions from a state S into the next state Sl:
: ,S S c S c c r S c" + "6 ! =l l ^ h, i.e. all cells of a state

transition concurrently into new cells by following a rule r.

Next_State = forall World_Indices in World do Rule (State, World_Indices);

"

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 518 of 700 (chapter 7: “Architectures” up to page 568)

Vector Machines

General Data-parallelism

Cellular automaton transitions from a state S into the next state Sl:
: ,S S c S c c r S c" + "6 ! =l l ^ h, i.e. all cells of a state

transition concurrently into new cells by following a rule r.

Next_State = forall World_Indices in World do Rule (State, World_Indices);

John Conway’s Game of Life rule:

proc Rule (S, (i, j) : index (World)) : Cell {

 const Population : index ({0 .. 9}) =
 + reduce Count (Cell.Alive, S [i - 1 .. i + 1, j - 1 .. j + 1]);

 return (if Population == 3
 || (Population == 4 && S [i, j] == Cell.Alive) then Cell.Alive
 else Cell.Dead);
}

"

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 519 of 700 (chapter 7: “Architectures” up to page 568)

Occam

William of Ockham (born at Ockham in Surrey (England) in 1280 and died in Munich in 1349):

• Philosopher and Franciscan monk

• Reasoning in the frame of the school of Nominalism:
 … science has nothing to do directly with things, but only with concepts of them
 … leading to the absolute subjectivity of all concepts and universals

• Pioneer of modern Epistemology
(will also help to develop the concept of Phenomenology 500 years later)

‘Occam’s razor’:

“Pluralitas non est ponenda sine neccesitate”
or “plurality should not be posited without necessity”

(a commonplace in medieval philosophy)

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 520 of 700 (chapter 7: “Architectures” up to page 568)

Occam

Occam’s Razor:

“Pluralitas non est ponenda sine neccesitate”
or “plurality should not be posited without necessity”

Here: Minimalist language approach supplying all means for

 Concurrency & communication

 Distributed systems

 Realtime / predictable systems

Origins: CSP (Communicating Sequential Processes) by Tony Hoare

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 521 of 700 (chapter 7: “Architectures” up to page 568)

Occam

Characteristics: (...everything is a process)

• Primitive processes are

• assignments

• input or output statements (channel operations)

• SKIP or STOP (elementary processes)

• Constructors are

• SEQ (sequence) + replication

• PAR (parallel) + replication

• ALT (alternation) + replication + priorities

• IF (conditional) + replication

• CASE (selection)

• WHILE (conditional loop)

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 522 of 700 (chapter 7: “Architectures” up to page 568)

Occam

Characteristics: (...everything is a process)

Primitive processes are
• assignments

• input or output statements (channel operations)

• SKIP or STOP (elementary processes)

Constructors are
• SEQ (sequence) + replication

• PAR (parallel) + replication

• ALT (alternation) + replication + priorities

• IF (conditional) + replication

• CASE (selection)

• WHILE (conditional loop)

page 522 of 700 (chapter 7: “Architectures” up to page 568)0

Essential Occam2 keywords

ALT PAR SEQ PRI

ANY CHAN OF
DATA TYPE RECORD OFFSETOF PACKED

BOOL BYTE INT REAL

CASE IF ELSE FOR FROM WHILE

FUNCTION RESULT PROC IS

PROCESSOR PROTOCOL TIMER

SKIP STOP VALOF

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 523 of 700 (chapter 7: “Architectures” up to page 568)

Occam

Characteristics: (...everything is a process and static)

 No dynamic process creation

 No unlimited recursion

Syntax structure:

• Indentation is used for block indication (instead of ‘begin... end’ or brackets)

Scope of names:

• Strictly local, indicated by indentation

• No ‘forward declarations’, ‘exports’, ‘global variables’ or ‘shared memory’

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 524 of 700 (chapter 7: “Architectures” up to page 568)

Occam

VAL INT n IS 50:
 -- # of primes to be generated

VAL INT limit IS 1000:
 -- range to check

[n-2] CHAN OF INT link:
 -- links between filters

[n-1] CHAN OF INT prime:
 -- channels to Print process

CHAN OF INT display:
PLACE display AT 1:
 -- output display to device 1

Starter

Sieve [1]

3,
5,
…

Sieve [2]

5, 7, …

Sieve [3]

7, 11, …

Printer

2

3

5

7

Sieve [4]

11,
13,
…

Sieve [5]

Sieve [6]

11

17

13

Ender

…

17, 19, …

13,
17,
…

19, 23, …

Sieve [.]SSSSSSSSSSSiiiiiiiieeeeeeevvvvvvvvveeeeeeeee [[[[
Sieve [.]

S
SSSSSSSSSSSiiiiiiiieeeeevv [[ieeeevvvvvvvveeeeeeee [[[[ieeeevvvv [[[

Sieve [n]

…

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 525 of 700 (chapter 7: “Architectures” up to page 568)

Occam

PROC Starter (CHAN OF INT out, print)
 -- feed number into the chain

INT i:
 SEQ
 print ! 2 -- 2 is prime
 i := 3
 WHILE i < limit
 SEQ
 out ! i
 i := i + 2:
 -- generate odd numbers

Starter

Sieve [1]

3,
5,
…

Sieve [2]

5, 7, …

Sieve [3]

7, 11, …

Printer

2

3

5

7

Sieve [4]

11,
13,
…

Sieve [5]

Sieve [6]

11

17

13

Ender

…

17, 19, …

13,
17,
…

19, 23, …

Sieve [.]SSSSSSSSSSSiiiiiiiieeeeeeevvvvvvvvveeeeeeeee [[[[
Sieve [.]

S
SSSSSSSSSSSiiiiiiiieeeeevv [[ieeeevvvvvvvveeeeeeee [[[[ieeeevvvv [[[

Sieve [n]

…

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 526 of 700 (chapter 7: “Architectures” up to page 568)

Occam

PROC Sieve (CHAN OF INT in, out, print)
 -- filter out one prime

INT p, next:
 SEQ
 in ? p
 print ! p -- p is prime
 WHILE TRUE
 SEQ
 in ? next
 IF (next \ p) <> 0 -- remainder?
 out ! next
 TRUE
 SKIP

Starter

Sieve [1]

3,
5,
…

Sieve [2]

5, 7, …

Sieve [3]

7, 11, …

Printer

2

3

5

7

Sieve [4]

11,
13,
…

Sieve [5]

Sieve [6]

11

17

13

Ender

…

17, 19, …

13,
17,
…

19, 23, …

Sieve [.]SSSSSSSSSSSiiiiiiiieeeeeeevvvvvvvvveeeeeeeee [[[[
Sieve [.]

S
SSSSSSSSSSSiiiiiiiieeeeevv [[ieeeevvvvvvvveeeeeeee [[[[ieeeevvvv [[[

Sieve [n]

…

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 527 of 700 (chapter 7: “Architectures” up to page 568)

Occam

PROC Ender (CHAN OF INT in, print)
 -- consume rest of numbers

INT p:
 SEQ
 in ? p
 print ! p -- p is prime
 WHILE TRUE
 in ? p:

Starter

Sieve [1]

3,
5,
…

Sieve [2]

5, 7, …

Sieve [3]

7, 11, …

Printer

2

3

5

7

Sieve [4]

11,
13,
…

Sieve [5]

Sieve [6]

11

17

13

Ender

…

17, 19, …

13,
17,
…

19, 23, …

Sieve [.]SSSSSSSSSSSiiiiiiiieeeeeeevvvvvvvvveeeeeeeee [[[[
Sieve [.]

S
SSSSSSSSSSSiiiiiiiieeeeevv [[ieeeevvvvvvvveeeeeeee [[[[ieeeevvvv [[[

Sieve [n]

…

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 528 of 700 (chapter 7: “Architectures” up to page 568)

Occam

PROC Printer ([] CHAN OF INT value)
 -- print each prime, in order

INT p:
 SEQ i = 0 FOR SIZE value
 SEQ
 value [i] ? p
 display ! p:

Starter

Sieve [1]

3,
5,
…

Sieve [2]

5, 7, …

Sieve [3]

7, 11, …

Printer

2

3

5

7

Sieve [4]

11,
13,
…

Sieve [5]

Sieve [6]

11

17

13

Ender

…

17, 19, …

13,
17,
…

19, 23, …

Sieve [.]SSSSSSSSSSSiiiiiiiieeeeeeevvvvvvvvveeeeeeeee [[[[
Sieve [.]

S
SSSSSSSSSSSiiiiiiiieeeeevv [[ieeeevvvvvvvveeeeeeee [[[[ieeeevvvv [[[

Sieve [n]

…

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 529 of 700 (chapter 7: “Architectures” up to page 568)

Occam

PAR -- main program

 Starter (link [0], prime [0])
 PAR i = 1 FOR n-2
 Sieve (link [i-1], link [i], prime [i])
 Ender (link [n-1], prime [n-1])
 Printer (prime)

Starter

Sieve [1]

3,
5,
…

Sieve [2]

5, 7, …

Sieve [3]

7, 11, …

Printer

2

3

5

7

Sieve [4]

11,
13,
…

Sieve [5]

Sieve [6]

11

17

13

Ender

…

17, 19, …

13,
17,
…

19, 23, …

Sieve [.]SSSSSSSSSSSiiiiiiiieeeeeeevvvvvvvvveeeeeeeee [[[[
Sieve [.]

S
SSSSSSSSSSSiiiiiiiieeeeevv [[ieeeevvvvvvvveeeeeeee [[[[ieeeevvvv [[[

Sieve [n]

…

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 530 of 700 (chapter 7: “Architectures” up to page 568)

Operating Systems

What is an operating system?

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 531 of 700 (chapter 7: “Architectures” up to page 568)

What is an operating system?

1. A virtual machine!

... offering a more comfortable, more fl exible and safer environment

(e.g. memory protection, hardware abstraction, multitasking, ...)

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 532 of 700 (chapter 7: “Architectures” up to page 568)

What is an operating system?

1. A virtual machine!

... offering a more comfortable, more fl exible and safer environment

Hardware

OS

Tasks

Typ. general OS

Hardware
RT-OS

Tasks

Typ. real-time system

Hardware

Tasks

Typ. embedded system

run-time
environment

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 533 of 700 (chapter 7: “Architectures” up to page 568)

What is an operating system?

2. A resource manager!

... coordinating access to hardware resources

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 534 of 700 (chapter 7: “Architectures” up to page 568)

What is an operating system?

2. A resource manager!

... coordinating access to hardware resources

Operating systems deal with

• processors

• memory

• mass storage

• communication channels

• devices (timers, special purpose processors, peripheral hardware, ...

 and tasks/processes/programs which are applying for access to these resources!

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 535 of 700 (chapter 7: “Architectures” up to page 568)

The evolution of operating systems

• in the beginning: single user, single program, single task, serial processing - no OS

• 50s: System monitors / batch processing
 the monitor ordered the sequence of jobs and triggered their sequential execution

• 50s-60s: Advanced system monitors / batch processing:
 the monitor is handling interrupts and timers
 fi rst support for memory protection
 fi rst implementations of privileged instructions (accessible by the monitor only).

• early 60s: Multiprogramming systems:
 employ the long device I/O delays for switches to other, runable programs

• early 60s: Multiprogramming, time-sharing systems:
 assign time-slices to each program and switch regularly

• early 70s: Multitasking systems – multiple developments resulting in UNIX (besides others)

• early 80s: single user, single tasking systems, with emphasis on user interface or APIs.
MS-DOS, CP/M, MacOS and others fi rst employed ‘small scale’ CPUs (personal computers).

• mid-80s: Distributed/multiprocessor operating systems - modern UNIX systems (SYSV, BSD)

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 536 of 700 (chapter 7: “Architectures” up to page 568)

The evolution of communication systems

• 1901: fi rst wireless data transmission (Morse-code from ships to shore)

• ‘56: fi rst transmission of data through phone-lines

• ‘62: fi rst transmission of data via satellites (Telstar)

• ‘69: ARPA-net (predecessor of the current internet)

• 80s: introduction of fast local networks (LANs): ethernet, token-ring

• 90s: mass introduction of wireless networks (LAN and WAN)

Current standard consumer computers come with:

• High speed network connectors (e.g. GB-ethernet)

• Wireless LAN (e.g. IEEE802.11g)

• Local device bus-system (e.g. Firewire 800 or USB 3.0)

• Wireless local device network (e.g. Bluetooth)

• Infrared communication (e.g. IrDA)

• Modem/ADSL

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 537 of 700 (chapter 7: “Architectures” up to page 568)

Types of current operating systems

Personal computing systems, workstations, and workgroup servers:

• late 70s: Workstations starting by porting UNIX or VMS to ‘smaller’ computers.

• 80s: PCs starting with almost none of the classical OS-features and services,
but with an user-interface (MacOS) and simple device drivers (MS-DOS)

 last 20 years: evolving and expanding into current general purpose OSs:

• Solaris (based on SVR4, BSD, and SunOS)

• LINUX (open source UNIX re-implementation for x86 processors and others)

• current Windows (proprietary, partly based on Windows NT, which is ‘related’ to VMS)

• MacOS X (Mach kernel with BSD Unix and a proprietary user-interface)

• Multiprocessing is supported by all these OSs to some extent.

• None of these OSs are suitable for embedded systems, although trials have been performed.

• None of these OSs are suitable for distributed or real-time systems.

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 538 of 700 (chapter 7: “Architectures” up to page 568)

Types of current operating systems

Parallel operating systems

• support for a large number of processors, either:

• symmetrical: each CPU has a full copy of the operating system

or

• asymmetrical: only one CPU carries the full operating system, the others are
operated by small operating system stubs to transfer code or tasks.

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 539 of 700 (chapter 7: “Architectures” up to page 568)

Types of current operating systems

Distributed operating systems

• all CPUs carry a small kernel operating system for communication services.

• all other OS-services are distributed over available CPUs

• services may migrate

• services can be multiplied in order to

• guarantee availability (hot stand-by)

• or to increase throughput (heavy duty servers)

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 540 of 700 (chapter 7: “Architectures” up to page 568)

Types of current operating systems

Real-time operating systems

• Fast context switches?

• Small size?

• Quick response to external interrupts?

• Multitasking?

• ‘low level’ programming interfaces?

• Interprocess communication tools?

• High processor utilization?

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 541 of 700 (chapter 7: “Architectures” up to page 568)

Types of current operating systems

Real-time operating systems

• Fast context switches? should be fast anyway

• Small size? should be small anyway

• Quick response to external interrupts? not ‘quick’, but predictable

• Multitasking? often, not always

• ‘low level’ programming interfaces? needed in many operating systems

• Interprocess communication tools? needed in almost all operating systems

• High processor utilization? fault tolerance builds on redundancy!

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 542 of 700 (chapter 7: “Architectures” up to page 568)

Types of current operating systems

Real-time operating systems need to provide...
 the logical correctness of the results as well as

 the correctness of the time, when the results are delivered

 Predictability! (not performance!)

 All results are to be delivered just-in-time – not too early, not too late.

Timing constraints are specifi ed in many different ways ...

... often as a response to ‘external’ events
 reactive systems

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 543 of 700 (chapter 7: “Architectures” up to page 568)

Types of current operating systems

Embedded operating systems

• usually real-time systems, often hard real-time systems

• very small footprint (often a few KBs)

• none or limited user-interaction

 90-95% of all processors are working here!

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 544 of 700 (chapter 7: “Architectures” up to page 568)

What is an operating system?

Is there a standard set of features for operating systems?

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 545 of 700 (chapter 7: “Architectures” up to page 568)

What is an operating system?

Is there a standard set of features for operating systems?

 no:

the term ‘operating system’ covers 4 kB microkernels,

as well as > 1 GB installations of desktop general purpose operating systems.

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 546 of 700 (chapter 7: “Architectures” up to page 568)

What is an operating system?

Is there a standard set of features for operating systems?

 no:

the term ‘operating system’ covers 4 kB microkernels,

as well as > 1 GB installations of desktop general purpose operating systems.

Is there a minimal set of features?

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 547 of 700 (chapter 7: “Architectures” up to page 568)

What is an operating system?

Is there a standard set of features for operating systems?

 no:

the term ‘operating system’ covers 4 kB microkernels,

as well as > 1 GB installations of desktop general purpose operating systems.

Is there a minimal set of features?

 almost:

memory management, process management and inter-process communication/synchronisation

will be considered essential in most systems

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 548 of 700 (chapter 7: “Architectures” up to page 568)

What is an operating system?

Is there a standard set of features for operating systems?

 no:

the term ‘operating system’ covers 4 kB microkernels,

as well as > 1 GB installations of desktop general purpose operating systems.

Is there a minimal set of features?

 almost:

memory management, process management and inter-process communication/synchronisation

will be considered essential in most systems

Is there always an explicit operating system?

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 549 of 700 (chapter 7: “Architectures” up to page 568)

What is an operating system?

Is there a standard set of features for operating systems?

 no:

the term ‘operating system’ covers 4 kB microkernels,

as well as > 1 GB installations of desktop general purpose operating systems.

Is there a minimal set of features?

 almost:

memory management, process management and inter-process communication/synchronisation

will be considered essential in most systems

Is there always an explicit operating system?

 no:

some languages and development systems operate with standalone runtime environments

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 550 of 700 (chapter 7: “Architectures” up to page 568)

Typical features of operating systems

Process management:
• Context switch

• Scheduling

• Book keeping (creation, states, cleanup)

 context switch:

 needs to...

• ‘remove’ one process from the CPU while preserving its state

• choose another process (scheduling)

• ‘insert’ the new process into the CPU, restoring the CPU state

Some CPUs have hardware support for context switching, otherwise:

 use interrupt mechanism

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 551 of 700 (chapter 7: “Architectures” up to page 568)

Typical features of operating systems

Memory management:
• Allocation / Deallocation

• Virtual memory: logical vs. physical addresses, segments, paging, swapping, etc.

• Memory protection (privilege levels, separate virtual memory segments, ...)

• Shared memory

Synchronisation / Inter-process communication
• semaphores, mutexes, cond. variables, channels, mailboxes, MPI, etc. (chapter 4)

 tightly coupled to scheduling / task switching!

Hardware abstraction
• Device drivers

• API

• Protocols, fi le systems, networking, everything else...

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 552 of 700 (chapter 7: “Architectures” up to page 568)

Typical structures of operating systems

Monolithic
(or ‘the big mess...’)

• non-portable

• hard to maintain

• lacks reliability

• all services are in the kernel (on the same privilege level)

 but: may reach high effi ciency

e.g. most early UNIX systems,

MS-DOS (80s), Windows (all non-NT based versions)

MacOS (until version 9), and many others...

Hardware

OS

Tasks

Monolithic

APIs

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 553 of 700 (chapter 7: “Architectures” up to page 568)

Typical structures of operating systems

Monolithic & Modular

• Modules can be platform independent

• Easier to maintain and to develop

• Reliability is increased

• all services are still in the kernel (on the same privilege level)

 may reach high effi ciency

e.g. current Linux versions

Hardware

OS

Tasks

Modular

APIs

M1 M1 Mn…

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 554 of 700 (chapter 7: “Architectures” up to page 568)

Typical structures of operating systems

Monolithic & layered

• easily portable

• signifi cantly easier to maintain

• crashing layers do not necessarily stop the whole OS

• possibly reduced effi ciency through many interfaces

• rigorous implementation of the stacked virtual machine

 perspective on OSs

e.g. some current UNIX implementations (e.g. Solaris) to a certain de-
gree, many research OSs (e.g. ‘THE system’, Dijkstra ‘68)

Hardware

Tasks

Layered

M0

M1

Mn
OS

APIs

…

layers

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 555 of 700 (chapter 7: “Architectures” up to page 568)

Typical structures of operating systems

µKernels & virtual machines

• µkernel implements essential process,
memory, and message handling

• all ‘higher’ services are dealt with outside the
kernel ☞ no threat for the kernel stability

• signifi cantly easier to maintain

• multiple OSs can be executed
at the same time

• µkernel is highly hardware dependent
☞ only the µkernel needs to be ported.

• possibly reduced effi ciency through
increased communications

e.g. wide spread concept: as early as the CP/M, VM/370 (‘79)
or as recent as MacOS X (mach kernel + BSD unix), ...

Hardware

µkernel, virtual machine

µkernel

Tasks

M0

M1

Mn
OS

APIs

…

layersOS

Tasks

APIs

M1 M1 Mn…OS

Tasks

APIs

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 556 of 700 (chapter 7: “Architectures” up to page 568)

Typical structures of operating systems

µKernels & client-server models

• µkernel implements essential process,
memory, and message handling

• all ‘higher’ services are user level servers

• signifi cantly easier to maintain

• kernel ensures reliable message passing
between clients and servers

• highly modular and fl exible

• servers can be redundant and easily replaced

• possibly reduced effi ciency through
increased communications

e.g. current research projects, L4, etc.

Hardware

µkernel, client server structure

µkernel

service mservice 1task 1 task n

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 557 of 700 (chapter 7: “Architectures” up to page 568)

Typical structures of operating systems

µKernels & client-server models

• µkernel implements essential process,
memory, and message handling

• all ‘higher’ services are user level servers

• signifi cantly easier to maintain

• kernel ensures reliable message passing
between clients and servers:
locally and through a network

• highly modular and fl exible

• servers can be redundant and easily replaced

• possibly reduced effi ciency through increased communications

e.g. Java engines,
distributed real-time operating systems, current distributed OSs research projects

µkernel, distributed systems

task 1 task n service 1

µkernel µkernel

service m

µkernel

Hardware

Network

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 558 of 700 (chapter 7: “Architectures” up to page 568)

UNIX

UNIX features

• Hierarchical fi le-system (maintained via ‘mount’ and ‘unmount’)

• Universal fi le-interface applied to fi les, devices (I/O), as well as IPC

• Dynamic process creation via duplication

• Choice of shells

• Internal structure as well as all APIs are based on ‘C’

• Relatively high degree of portability

 UNICS, UNIX, BSD, XENIX, System V, QNX, IRIX, SunOS, Ultrix, Sinix, Mach,
Plan 9, NeXTSTEP, AIX, HP-UX, Solaris, NetBSD, FreeBSD, Linux, OPEN-
STEP, OpenBSD, Darwin, QNX/Neutrino, OS X, QNX RTOS,

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 559 of 700 (chapter 7: “Architectures” up to page 568)

UNIX

Dynamic process creation

pid = fork ();

resulting a duplication of the current process

• returning 0 to the newly created process

• returning the process id of the child process to the creating process (the ‘parent’ process)
or -1 for a failure

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 560 of 700 (chapter 7: “Architectures” up to page 568)

UNIX

Dynamic process creation

pid = fork ();

resulting a duplication of the current process

• returning 0 to the newly created process

• returning the process id of the child process to the creating process (the ‘parent’ process)
or -1 for a failure

Frequent usage:
if (fork () == 0) {
 // ... the child’s task ... often implemented as:
 exec (“absolute path to executable file“, “args“);
 exit (0); /* terminate child process */
} else {
 //... the parent’s task ...
 pid = wait (); /* wait for the termination of one child process */
}

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 561 of 700 (chapter 7: “Architectures” up to page 568)

UNIX

Synchronization in UNIX ☞ Signals

#include <unistd.h>
#include <sys/types.h>
#include <signal.h>

pid_t id;

void catch_stop (int sig_num)

{

 /* do something with the signal */

}

id = fork ();

if (id == 0) {

 signal (SIGSTOP, catch_stop);

 pause ();

 exit (0);

} else {

 kill (id, SIGSTOP);

 pid = wait ();

}

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 562 of 700 (chapter 7: “Architectures” up to page 568)

UNIX

Message passing in UNIX ☞ Pipes
int data_pipe [2], c, rc;

if (pipe (data_pipe) == -1) {

 perror (“no pipe“); exit (1);

}

if (fork () == 0) { // child

 close (data_pipe [1]);

 while ((rc = read

 (data_pipe [0], &c, 1)) >0) {

 putchar (c);

 }

 if (rc == -1) {

 perror (“pipe broken“);

 close (data_pipe [0]); exit (1);}

 close (data_pipe [0]); exit (0);

 } else { // parent

 close (data_pipe [0]);

 while ((c = getchar ()) > 0) {

 if (write

 (data_pipe[1], &c, 1) == -1) {

 perror (“pipe broken“);

 close (data_pipe [1]);

 exit (1);

 };

 }

 close (data_pipe [1]);

 pid = wait ();

}

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 563 of 700 (chapter 7: “Architectures” up to page 568)

UNIX

Processes & IPC in UNIX

Processes:
• Process creation results in a duplication of address space (‘copy-on-write’ becomes necessary)

 ineffi cient, but can generate new tasks out of any user process – no shared memory!

Signals:
• limited information content, no buffering, no timing assurances (signals are not interrupts!)

 very basic, yet not very powerful form of synchronisation

Pipes:
• unstructured byte-stream communication, access is identical to fi le operations

 not suffi cient to design client-server architectures or network communications

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 564 of 700 (chapter 7: “Architectures” up to page 568)

UNIX

Sockets in BSD UNIX

Sockets try to keep the paradigm of a universal fi le interface for everything and introduce:

Connectionless interfaces (e.g. UDP/IP):

• Server side: socket ➠ bind ➠ recvfrom ➠ close
• Client side: socket ➠ sendto ➠ close

Connection oriented interfaces (e.g. TCP/IP):

• Server side: socket ➠ bind ➠ {select} [connect | listen ➠
 accept ➠ read | write ➠ [close | shutdown]

• Client side: socket ➠ bind ➠ connect ➠ write | read ➠ [close | shutdown]

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 565 of 700 (chapter 7: “Architectures” up to page 568)

POSIX

Portable Operating System Interface for Unix

• IEEE/ANSI Std 1003.1 and following.

• Library Interface (API)
[C Language calling conventions – types exit mostly in terms of
(open) lists of pointers and integers with overloaded meanings].

• More than 30 different POSIX standards (and growing / changing).
 a system is ‘POSIX compliant’, if it implements parts of one of them!

 a system is ‘100% POSIX compliant’, if it implements one of them!

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 566 of 700 (chapter 7: “Architectures” up to page 568)

POSIX - some of the relevant standards...

1003.1
12/01 OS Defi nition

single process, multi process, job control, signals, user groups, fi le system, fi le at-
tributes, fi le device management, fi le locking, device I/O, device-specifi c control,
system database, pipes, FIFO, ...

1003.1b
10/93

Real-time
Extensions

real-time signals, priority scheduling, timers, asynchronous I/O, prioritized I/O, syn-
chronized I/O, fi le sync, mapped fi les, memory locking, memory protection, mes-
sage passing, semaphore, ...

1003.1c
6/95 Threads

multiple threads within a process; includes support for: thread control, thread attrib-
utes, priority scheduling, mutexes, mutex priority inheritance, mutex priority ceiling,
and condition variables

1003.1d
10/99

Additional Real-
time Extensions

new process create semantics (spawn), sporadic server scheduling, execution time
monitoring of processes and threads, I/O advisory information, timeouts on block-
ing functions, device control, and interrupt control

1003.1j
1/00

Advanced Real-
time Extensions

typed memory, nanosleep improvements, barrier synchronization, reader/writer
locks, spin locks, and persistent notifi cation for message queues

1003.21
-/-

Distributed
Real-time

buffer management, send control blocks, asynchronous and synchronous oper-
ations, bounded blocking, message priorities, message labels, and implementation
protocols

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 567 of 700 (chapter 7: “Architectures” up to page 568)

POSIX - 1003.1b/c

Frequently employed POSIX features include:

• Threads: a common interface to threading - differences to ‘classical UNIX processes’

• Timers: delivery is accomplished using POSIX signals

• Priority scheduling: fi xed priority, 32 priority levels

• Real-time signals: signals with multiple levels of priority

• Semaphore: named semaphore

• Memory queues: message passing using named queues

• Shared memory: memory regions shared between multiple processes

• Memory locking: no virtual memory swapping of physical memory pages

Architectures

© 2015 Uwe R. Zimmer, The Australian National University page 568 of 700 (chapter 7: “Architectures” up to page 568)

Summary

Architectures

• Hardware architectures - from simple logic to supercomputers
• logic, CPU architecture, pipelines, out-of-order execution, multithreading, ...

• Data-Parallelism
• Vectorization, Reduction, General data-parallelism

• Concurrency in languages
• Some examples: Haskell, Occam, Chapel

• Operating systems
• Structures: monolithic, modular, layered, µkernels

• UNIX, POSIX

8
Distributed Systems

Uwe R. Zimmer - The Australian National University

Concurrent & Distributed Systems 2015

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 570 of 700 (chapter 8: “Distributed Systems” up to page 689)

References for this chapter

[Bacon1998]
 Bacon, J
 Concurrent Systems
 Addison Wesley Longman
Ltd (2nd edition) 1998

 [Ben2006]
 Ben-Ari, M
 Principles of Concurrent and Dis-
tributed Programming
 second edition, Prentice-Hall 2006

 [Schneider1990]
 Schneider, Fred
 Implementing fault-tolerant services using
the state machine approach: a tutorial
 ACM Computing Surveys 1990
vol. 22 (4) pp. 299-319

 [Tanenbaum2001]
 Tanenbaum, Andrew
 Distributed Systems: Prin-
ciples and Paradigms
 Prentice Hall 2001

 [Tanenbaum2003]
 Tanenbaum, Andrew
 Computer Networks
 Prentice Hall, 2003

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 571 of 700 (chapter 8: “Distributed Systems” up to page 689)

Network protocols & standards

OSI network reference model

Standardized as the
Open Systems Interconnection (OSI) reference model by the

International Standardization Organization (ISO) in 1977

• 7 layer architecture

• Connection oriented

Hardy implemented anywhere in full …

…but its concepts and terminology are widely used,
when describing existing and designing new protocols …

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 572 of 700 (chapter 8: “Distributed Systems” up to page 689)

Network protocols & standards

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

User data User data

OSI Network Layers

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 573 of 700 (chapter 8: “Distributed Systems” up to page 689)

Network protocols & standards

1: Physical Layer

• Service: Transmission of a raw bit stream
over a communication channel

• Functions: Conversion of bits into electrical or optical signals

• Examples: X.21, Ethernet (cable, detectors & amplifi ers)

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

User data User data

OSI Network Layers

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 574 of 700 (chapter 8: “Distributed Systems” up to page 689)

Network protocols & standards

2: Data Link Layer

• Service: Reliable transfer of frames over a link

• Functions: Synchronization, error correction, flow control

• Examples: HDLC (high level data link control protocol),
LAP-B (link access procedure, balanced),
LAP-D (link access procedure, D-channel),
LLC (link level control), …

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

User data User data

OSI Network Layers

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 575 of 700 (chapter 8: “Distributed Systems” up to page 689)

Network protocols & standards

3: Network Layer

• Service: Transfer of packets inside the network

• Functions: Routing, addressing, switching, congestion control

• Examples: IP, X.25

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

User data User data

OSI Network Layers

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 576 of 700 (chapter 8: “Distributed Systems” up to page 689)

Network protocols & standards

4: Transport Layer

• Service: Transfer of data between hosts

• Functions: Connection establishment, management,
termination, flow-control, multiplexing, error detection

• Examples: TCP, UDP, ISO TP0-TP4

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

User data User data

OSI Network Layers

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 577 of 700 (chapter 8: “Distributed Systems” up to page 689)

Network protocols & standards

5: Session Layer

• Service: Coordination of the dialogue between application programs

• Functions: Session establishment, management, termination

• Examples: RPC

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

User data User data

OSI Network Layers

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 578 of 700 (chapter 8: “Distributed Systems” up to page 689)

Network protocols & standards

6: Presentation Layer

• Service: Provision of platform independent coding and encryption

• Functions: Code conversion, encryption, virtual devices

• Examples: ISO code conversion, PGP encryption

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

User data User data

OSI Network Layers

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 579 of 700 (chapter 8: “Distributed Systems” up to page 689)

Network protocols & standards

7: Application Layer

• Service: Network access for application programs

• Functions: Application/OS specific

• Examples: APIs for mail, ftp, ssh, scp, discovery protocols …

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

User data User data

OSI Network Layers

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 580 of 700 (chapter 8: “Distributed Systems” up to page 689)

Network protocols & standards

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

IP

Network

Physical

User data User data

OSI

Transport

Application

TCP/IP OSI

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 581 of 700 (chapter 8: “Distributed Systems” up to page 689)

Network protocols & standards

Application

Presentation

Session

Transport

Network

Data link

Physical

AppleTalk Filing Protocol (AFP)

Routing Table
Maintenance Prot.

IP

Network

Physical

OSI

Transport

Application

TCP/IP AppleTalk

AT Update Based
Routing Protocol

AT Transaction
Protocol

Name
Binding Prot.

AT Echo
Protocol

AT Data Stream
Protocol

AT Session
Protocol

Zone Info
Protocol

Printer Access
Protocol

Datagram Delivery Protocol (DDP)

AppleTalk Address Resolution Protocol (AARP)

EtherTalk Link
Access Protocol

LocalTalk Link
Access Protocol

TokenTalk Link
Access Protocol

FDDITalk Link
Access Protocol

IEEE 802.3 LocalTalk Token Ring
IEEE 802.5 FDDI

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 582 of 700 (chapter 8: “Distributed Systems” up to page 689)

Network protocols & standards

Application

Presentation

Session

Transport

Network

Data link

Physical

IP

Network

Physical

OSI AppleTalk over IP

EtherTalk Link
Access Protocol

LocalTalk Link
Access Protocol

TokenTalk Link
Access Protocol

FDDITalk Link
Access Protocol

IEEE 802.3 LocalTalk Token Ring
IEEE 802.5 FDDI

AppleTalk Filing Protocol (AFP)

Routing Table
Maintenance Prot.

AT Update Based Routing
Protocol

AT Transaction
Protocol

Name Binding
Protocol

AT Echo
Protocol

AT Data Stream Protocol AT Session Protocol Zone Info Protocol Printer Access Protocol

Datagram Delivery Protocol (DDP)

AppleTalk Address Resolution Protocol (AARP)

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 583 of 700 (chapter 8: “Distributed Systems” up to page 689)

Network protocols & standards

Ethernet / IEEE 802.3

Local area network (LAN) developed by Xerox in the 70’s

• 10 Mbps specification 1.0 by DEC, Intel, & Xerox in 1980.

• First standard as IEEE 802.3 in 1983 (10 Mbps over thick co-ax cables).

• currently 1 Gbps (802.3ab) copper cable ports used in most desktops and laptops.

• currently standards up to 100 Gbps (IEEE 802.3ba 2010).

• more than 85 % of current LAN lines worldwide
(according to the International Data Corporation (IDC)).

 Carrier Sense Multiple Access with Collision Detection (CSMA/CD)

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 584 of 700 (chapter 8: “Distributed Systems” up to page 689)

Network protocols & standards

Ethernet / IEEE 802.3
OSI relation: PHY, MAC, MAC-client

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

User data User data

OSI Network Layers
OSI

reference
model

Application

Presentation

Session

Transport

Network

Data link

Physical

IEEE 802.3
reference

model

MAC-client

Media Access (MAC)

Physical (PHY)

Upper-layer
protocols

IEEE 802-specific

IEEE 802.3-specific

Media-specific

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 585 of 700 (chapter 8: “Distributed Systems” up to page 689)

Network protocols & standards

Ethernet / IEEE 802.3
OSI relation: PHY, MAC, MAC-client

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

User data User data

OSI Network Layers

802.3 MAC

Physical medium-
independent layer

MAC Client

MII

Physical medium-
dependent layers

MDI

802.3 MAC

Physical medium-
independent layer

MAC Client

MII

Physical medium-
dependent layers

MDI

PHY

Link media,
signal encoding, and

transmission rate

Transmission rate

MII = Medium-independent interface
MDI = Medium-dependent interface - the link connector

Link

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 586 of 700 (chapter 8: “Distributed Systems” up to page 689)

Network protocols & standards

Ethernet / IEEE 802.11

Wireless local area network (WLAN) developed in the 90’s

• First standard as IEEE 802.11 in 1997 (1-2 Mbps over 2.4 GHz).

• Typical usage at 54 Mbps over 2.4 GHz carrier at 20 MHz bandwidth.

• Current standards up to 780 Mbps (802.11ac) over 5 GHz carrier at 160 MHz bandwidth.

• Future standards are designed for up to 100 Gbps over 60 GHz carrier.

• Direct relation to IEEE 802.3 and similar OSI layer association.

 Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)

 Direct-Sequence Spread Spectrum (DSSS)

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 587 of 700 (chapter 8: “Distributed Systems” up to page 689)

Network protocols & standards

Bluetooth

Wireless local area network (WLAN) developed in the 90’s with different features than 802.11:

• Lower power consumption.

• Shorter ranges.

• Lower data rates (typically < 1 Mbps).

• Ad-hoc networking (no infrastructure required).

 Combinations of 802.11 and Bluetooth OSI layers
are possible to achieve the required features set.

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 588 of 700 (chapter 8: “Distributed Systems” up to page 689)

Network protocols & standards

Token Ring / IEEE 802.5 /
Fibre Distributed Data Interface (FDDI)

• “Token Ring “ developed by IBM in the 70’s

• IEEE 802.5 standard is modelled after the IBM Token Ring architecture
(specifi cations are slightly different, but basically compatible)

• IBM Token Ring requests are star topology as well as twisted pair cables,
while IEEE 802.5 is unspecified in topology and medium

• Fibre Distributed Data Interface combines a token ring architecture
with a dual-ring, fi bre-optical, physical network.

 Unlike CSMA/CD, Token ring is deterministic
(with respect to its timing behaviour)

 FDDI is deterministic and failure resistant

 None of the above is currently used in performance oriented applications.

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 589 of 700 (chapter 8: “Distributed Systems” up to page 689)

Network protocols & standards

Fibre Channel

• Developed in the late 80’s.

• ANSI standard since 1994.

• Current standards allow for 16 Gbps per link.

• Allows for three different topologies:

 Point-to-point: 2 addresses

 Arbitrated loop (similar to token ring): 127 addresses deterministic, real-time capable

 Switched fabric: 224 addresses, many topologies and concurrent data links possible

• Defi nes OSI equivalent layers up to the session level.

 Mostly used in storage arrays,
but applicable to super-computers and high integrity systems as well.

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 590 of 700 (chapter 8: “Distributed Systems” up to page 689)

Network protocols & standards

Fibre Channel
Mapping of Fibre Channel to OSI layers:

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

IP

Physical

User data User data

OSI TCP/IP OSI

IP

Physical

Application

FC/IP

FC-0

Application

FibreChannel

FC-4 FC-4
FC-3
FC-2

FC-3

FC-2

FC-1

TransportTransport

NetworkNetwork

Application

FC-3 Common service

FC-4 Protocol mapping

FC-2 Network

FC-0 Physical

FC-1 Data link

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 591 of 700 (chapter 8: “Distributed Systems” up to page 689)

Network protocols & standards

Infi niBand

• Developed in the late 90’s

• Defi ned by the Infi niBand Trade Association (IBTA) since 1999.

• Current standards allow for 25 Gbps per link.

• Switched fabric topologies.

• Concurrent data links possible (commonly up to 12 300 Gbps).

• Defi nes only the data-link layer and parts of the network layer.

• Existing devices use copper cables (instead of optical fi bres).

 Mostly used in super-computers and clusters but applicable to storage arrays as well.

 Cheaper than Ethernet or FibreChannel at high data-rates.

 Small packets (only up to 4 kB) and no session control.

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 592 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Distribution!

Motivation
Possibly …

 … fi ts an existing physical distribution (e-mail system, devices in a large craft, …).

 … high performance due to potentially high degree of parallel processing.

 … high reliability/integrity due to redundancy of hardware and software.

 … scalable.

 … integration of heterogeneous devices.

Different specifi cations will lead to substantially different distributed designs.

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 593 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

What can be distributed?

• State Common operations on distributed data

• Function Distributed operations on central data

• State & Function Client/server clusters

• none of those Pure replication, redundancy

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 594 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Common design criteria

 Achieve De-coupling / high degree of local autonomy

 Cooperation rather than central control

 Consider Reliability

 Consider Scalability

 Consider Performance

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 595 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Some common phenomena in distributed systems

1. Unpredictable delays (communication)
 Are we done yet?

2. Missing or imprecise time-base
 Causal relation or temporal relation?

3. Partial failures
 Likelihood of individual failures increases

 Likelihood of complete failure decreases (in case of a good design)

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 596 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Time in distributed systems

Two alternative strategies:

Based on a shared time Synchronize clocks!

Based on sequence of events Create a virtual time!

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 597 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

‘Real-time’ clocks
are:

• discrete – i.e. time is not dense and there is a minimal granularity

• drift affected:

Maximal clock drift d defi ned as:

() ()C t C t-
1 11

2 1
2 1# #d d+ +

-
t t-^ ^h h

t 'real-time'1

1

ideal clock

d

C 'measured time'

1-(1+d)-1

real clock

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 598 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Synchronize a ‘real-time’ clock (bi-directional)

Resetting the clock drift by regular reference time re-synchronization:

Maximal clock drift d defi ned as:

() ()C t C t-
1 11

2 1
2 1# #d d+ +

-
t t-^ ^h h

‘real-time’ clock is adjusted
forwards & backwards

 Calendar time
t 'real-time'

C 'measured time'

sync.sync.sync.

ref.
time

ref.
time

ref.
time

real clock

ideal
clock

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 599 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Synchronize a ‘real-time’ clock (forward only)

Resetting the clock drift by regular reference time re-synchronization:

Maximal clock drift d defi ned as:

() ()C t C t-
1 11

2 1
2 1# #d+

-
t t-^ h

‘real-time’ clock is adjusted
forwards only

 Monotonic time
t 'real-time'

C 'measured time'

sync.sync.sync.

ref.
time

ref.
time

ref.
time

ideal
clock

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 600 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Distributed critical regions with synchronized clocks
• 6 times:
6 received Requests: Add to local RequestQueue (ordered by time)
6 received Release messages:
 Delete corresponding Requests in local RequestQueue

1. Create OwnRequest and attach current time-stamp.
Add OwnRequest to local RequestQueue (ordered by time).
Send OwnRequest to all processes.

2. Delay by L2 (L being the time it takes for a message to reach all network nodes)

3. While Top (RequestQueue) ≠ OwnRequest: delay until new message

4. Enter and leave critical region

5. Send Release-message to all processes.

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 601 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Distributed critical regions with synchronized clocks

Analysis
• No deadlock, no individual starvation, no livelock.

• Minimal request delay: L2 .

• Minimal release delay: L.

• Communications requirements per request: N2 1-^ h messages
(can be signifi cantly improved by employing broadcast mechanisms).

• Clock drifts affect fairness, but not integrity of the critical region.

Assumptions:
• L is known and constant violation leads to loss of mutual exclusion.

• No messages are lost violation leads to loss of mutual exclusion.

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 602 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Virtual (logical) time [Lamport 1978]

() ()a b C a C b<" &

with a b" being a causal relation between a and b,
and ()C a , ()C b are the (virtual) times associated with a and b

a b" iff:
• a happens earlier than b in the same sequential control-fl ow or

• a denotes the sending event of message m,
while b denotes the receiving event of the same message m or

• there is a transitive causal relation between a and b: a e e bn1" " " "f

Notion of concurrency:

a b a b b a& " "/J Jz ^ ^h h

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 603 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Virtual (logical) time

() ()a b C a C b<" &

Implications:

() () ?C a C b< &

() () ?C a C b &=

() () () ?C a C b C c< &=

() () () ?C a C b C c< < &

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 604 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Virtual (logical) time

() ()a b C a C b<" &

Implications:

() () ()C a C b b a< & "J

() ()C a C b a b& z=

() () () ?C a C b C c< &=

() () () ?C a C b C c< < &

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 605 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Virtual (logical) time

() ()a b C a C b<" &

Implications:

() () () () ()C a C b a b a bb a< & " " 0J z=

() ()C a C b a b a b b a& " "/J Jz= = ^ ^h h

() () () ?C a C b C c< &=

() () () ?C a C b C c< < &

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 606 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Virtual (logical) time

() ()a b C a C b<" &

Implications:

() () () () ()C a C b a b a bb a< & " " 0J z=

() ()C a C b a b a b b a& " "/J Jz= = ^ ^h h

() () ()C a C b C c c a< & "J= ^ h

() () ()C a C b C c c a< < & "J^ h

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 607 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Virtual (logical) time

() ()a b C a C b<" &

Implications:

() () () () ()C a C b a b a bb a< & " " 0J z=

() ()C a C b a b a b b a& " "/J Jz= = ^ ^h h

() () () () ()C a C b C c c a a c a c< & " " 0J z= =^ h

() () () () ()C a C b C c c a a c a c< < & " " 0J z=^ h

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 608 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Virtual (logical) time

Time as derived from causal relations:

25

time0 5 10 15 20 25 30 35 40 45

21

20

P1

26 27 29

22

29

P2

P3

31 35 36

23 24 25 26 27 30 31 33 34 35 36 37

30 31 32 33 34 35 36 37 4038 39

27 28 30 37 38

Message

20 22

26

22 23 24

27

4

3027

24

29

2222225

8

222222222222222222222229999999999999999999

222222222225

9

26 22222222277777777777777777 30

3

26 222777777777777

0

2 333

31

36

3631

3 3333333 3

35

35

3837

33

333333433

3535

4333344 35

 Events in concurrent control fl ows are not ordered.

 No global order of time.

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 609 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Implementing a virtual (logical) time

1. :P C 0i i6 =

2. :Pi6

6 local events: C C 1i i= + ;
6 send events: C C 1i i= + ; Send (message, Ci);
6 receive events: Receive (message, Cm); (,)maxC C C 1i i m= + ;

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 610 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Distributed critical regions with logical clocks
• 6 times: 6 received Requests:

 Add to local RequestQueue (ordered by time)
 Reply with Acknowledge or OwnRequest

• 6 times: 6 received Release messages:
 Delete corresponding Requests in local RequestQueue

1. Create OwnRequest and attach current time-stamp.
 Add OwnRequest to local RequestQueue (ordered by time).
 Send OwnRequest to all processes.

2. Wait for Top (RequestQueue) = OwnRequest & no outstanding replies
3. Enter and leave critical region
4. Send Release-message to all processes.

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 611 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Distributed critical regions with logical clocks

Analysis
• No deadlock, no individual starvation, no livelock.

• Minimal request delay: 1N - requests (1 broadcast) + 1N - replies.

• Minimal release delay: 1N - release messages (or 1 broadcast).

• Communications requirements per request: N 13 -^ h messages
(or 1N - messages + 2 broadcasts).

• Clocks are kept recent by the exchanged messages themselves.

Assumptions:
• No messages are lost violation leads to stall.

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 612 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Distributed critical regions with a token ring structure

1. Organize all processes in a logical or physical ring topology

2. Send one token message to one process

3. 6 times, 6processes: On receiving the token message:
1. If required the process
 enters and leaves a critical section (while holding the token).
2. The token is passed along to the next process in the ring.

Assumptions:
• Token is not lost violation leads to stall.

(a lost token can be recovered by a number of means – e.g. the ‘election’ scheme following)

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 613 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Distributed critical regions with a central coordinator

A global, static, central coordinator
 Invalidates the idea of a distributed system

 Enables a very simple mutual exclusion scheme

Therefore:

• A global, central coordinator is employed in some systems … yet …

• … if it fails, a system to come up with a new coordinator is provided.

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 614 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Electing a central coordinator (the Bully algorithm)
Any process P which notices that the central coordinator is gone, performs:

1. P sends an Election-message
to all processes with higher process numbers.

2. P waits for response messages.
 If no one responds after a pre-defined amount of time:
P declares itself the new coordinator and sends out a Coordinator-message to all.

 If any process responds,
then the election activity for P is over and P waits for a Coordinator-message

All processes Pi perform at all times:

• If Pi receives a Election-message from a process with
a lower process number, it responds to the originating process
and starts an election process itself (if not running already).

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 615 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Distributed states
 How to read the current state of a distributed system?

25

time0 5 10 15 20 25 30 35 40 45

21

20

P1

26 27 29

22

29

P2

P3

31 35 36

23 24 25 26 27 30 31 33 34 35 36 37

30 31 32 33 34 35 36 37 4038 39

27 28 30 37 38

Message

20 22

26

22 23 24

27

4

3027

24

29

22225

8

2222222222222222222222229999999999999999

222222222225

9

26 222222222777777777777777777 30

3

26 222277777777

0

2 333

31

36

3631

3 3333333 3

35

35

3837

33

33333433

3535

4333344 35

This “god’s eye view” does in fact not exist.

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 616 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Distributed states
 How to read the current state of a distributed system?

P3 25

time0 5 10 15 20 25 30 35 40 45

21

20

P1

26 27 29

22

29

P2

31 35 36

23 24 25 26 27 30 31 33 34 35 36 37

30 31 32 33 34 35 36 37 4038 39

27 28 30 37 38

22

26

22 23 24

27

30

4

27

24

2222222222222222222222229999999999999999

29

22225

8

222222222225

9

26 22222222277777777777777777726 222277777777

6 3837

P0

P3 25

21

2

P1

P2 20

4444440363322 3333 3333333

33

4333344 333555553

3030

3130

3

3

333

333333333333

3133131303033

12

36

35 36

39

3333333333333333333337777777777777777 3

6

36

35

3837

33

3333333333333333333333444444444444444444444444 3337

444440

88838888

36

5

3

55

3

353535

Instead: some entity probes and collects local states.
 What state of the global system has been accumulated?

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 617 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Distributed states
 How to read the current state of a distributed system?

P3 25

time0 5 10 15 20 25 30 35 40 45

21

20

P1

26 27 29

22

29

P2

31 35 36

23 24 25 26 27 30 31 33 34 35 36 37

30 31 32 33 34 35 36 37 4038 39

27 28 30 37 38

20 22

26

22 23 24

27

30

4

27

24

2222222222222222222222229999999999999999

29

22225

8

222222222225

39

26 22222222277777777777777777726 222277777777

0

2 333

31

36

3631

3 3

35

3

35

3837

33

33333433

3535

4344 35

P0

3

3

30

3

3

33337

4444440

388888888

12

31

33333333 354333344 3

Instead: some entity probes and collects local states.
 What state of the global system has been accumulated?

 Connecting all the states to a global state.

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 618 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Distributed states

A consistent global state (snapshot) is defi ne by a unique division into:

• “The Past” P (events before the snapshot):
() ()e P e e e P2 1 2 1" &/! !

• “The Future” F (events after the snapshot):
() ()e e e eF F1 21 2" &/! !

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 619 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Distributed states
 How to read the current state of a distributed system?

P3 25

time0 5 10 15 20 25 30 35 40 45

21

20

P1

26 27 29

22

29

P2

31 35

23 24 25 26 27 30 31 33 34 35 36 37

30 31 32 33 34 35 36 37 4038 39

27 28 30 37 38

20 22

26

22 23 24

27

30

4

27

24

2222222222222222222222229999999999999999

29

22225

8

222222222225

09

26 22222222277777777777777777726 222277777777

0

2 33 333333333333333333444444444

31

37

31 35

444444

333333333333333333333 35

38

35

34

6

33333

363333333333333333333333333333335555555555555555555555555

3333333333333333333333333333333333333

P0

32

30

30

30

12

33337

4444440

388888888

Instead: some entity probes and collects local states.
 What state of the global system has been accumulated?

 Sorting the events into past and future events.

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 620 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Distributed states
 How to read the current state of a distributed system?

P3 25

time0 5 10 15 20 25 30 35 40 45

21

20

P1

26 27 29

22

29

P2

31 35

23 24 25 26 27 30 31 33 34 35 36 37

30 31 32 33 34 35 36 37 4038 39

27 28 30 37 38

20 22

26

22 23 24

27

30

4

27

24

22222222222222222222222299999999999999999

29

22222225

8

222222222225

09

26 2222222227777777777777777777726 222277777777

0

2 33 3333333333333333333444444444444

31

37

31 35

444444

35

38

35

34

636

33

3333333333333333333333335555555555555

P0

32

30

30

30

12

33337

44440

3888888

Instead: some entity probes and collects local states.
 What state of the global system has been accumulated?

 Event in the past receives a message from the future!
Division not possible Snapshot inconsistent!

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 621 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Snapshot algorithm

• Observer-process P0 (any process) creates a snapshot token ts and saves its local state s0.

• P0 sends ts to all other processes.

• Pi6 which receive ts (as an individual token-message, or as part of another message):

• Save local state si and send si to P0.

• Attach ts to all further messages, which are to be sent to other processes.

• Save ts and ignore all further incoming ts‘s.

• Pi6 which previously received ts and receive a message m without ts:

• Forward m to P0 (this message belongs to the snapshot).

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 622 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Distributed states
 Running the snapshot algorithm:

P3 25

time0 5 10 15 20 25 30 35 40 45

21

20

P1

26 27 29

22

29

P2

31 35 36

23 24 25 26 27 30 31 33 34 35 36 37

30 31 32 33 34 35 36 37 4038 39

27 28 30 37 38

22

26

22 23 24

27

4

3027

24

22999

22225

8

222222222222222222222222229999999999999999

222222222225

9

26 222222222777777777777777777

3

26 222277777777

0

0

2 333

31

36

3631

3 3333333 3

35

35

3837

22

21

220

33

33333433

3535P1

P2

P1

4333344 35

P0

3

30

3 31

0

P3

0

303033

12

• Observer-process P0 (any process) creates a snapshot token ts and saves its local state s0.

• P0 sends ts to all other processes.

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 623 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Distributed states
 Running the snapshot algorithm:

P3 25

time0 5 10 15 20 25 30 35 40 45

21

20

P1

26 27 29

22

29

P2

31 35 36

23 24 25 26 27 30 31 33 34 35 36 37

30 31 32 33 34 35 36 37 4038 39

27 28 30 37 38

22

26

22 23 24

27

30

4

27

24

2222222222222222222222229999999999999999

29

22225

8

222222222225

9

26 22222222277777777777777777726 222277777777

2 333 36

6

3 3333333 3

35

3837

33

4333344 35

P0

3

220

3030

3130

3

33

313131

P0

21

220

P1

P2

36365 33

333334

5533333333335555333333333333333335555333335303033

12

• Pi6 which receive ts (as an individual token-message, or as part of another message):

• Save local state si and send si to P0.

• Attach ts to all further messages, which are to be sent to other processes.

• Save ts and ignore all further incoming ts‘s.

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 624 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Distributed states
 Running the snapshot algorithm:

P3 25

time0 5 10 15 20 25 30 35 40 45

21

20

P1

26 27 29

22

29

P2

31 35 36

23 24 25 26 27 30 31 33 34 35 36 37

30 31 32 33 34 35 36 37 4038 39

27 28 30 37 38

22

26

22 23 24

27

30

4

27

24

2222222222222222222222229999999999999999

29

22225

8

222222222225

9

26 22222222277777777777777777726 222277777777

2 333 36

6

3 3333333 3

35

3837

33

4333344 35

P0

3

220

3030

3130

3

33

313131

P0

21

220

P1

P2

36365 33

333334

5533333333335555333333333333333335555333335303033

12

• Pi6 which previously received ts and receive a message m without ts:

• Forward m to P0 (this message belongs to the snapshot).

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 625 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Distributed states
 Running the snapshot algorithm:

P3 25

time0 5 10 15 20 25 30 35 40 45

21

20

P1

26 27 29

22

29

P2

31 35 36

23 24 25 26 27 30 31 33 34 35 36 37

30 31 32 33 34 35 36 37 4038 39

27 28 30 37 38

20 22

26

22 23 24

27

4

3027

24

P3

P1

P2

29

22225

8

2222222222222222222222229999999999999999

222222222225

9

26 22222222277777777777777777726 222277777777

2 333

0 5

363 3333333 3 3837

33

433334 54

P0

3

P0

3030

3130

3

33

3131

35 36

39

7 3

363

35

38375

31

P

333334

55533333333335555333333333333333335555333335 666666666666 3666666666666666666666666666633333333333333333666666666666666666666333333333333333633

3333333333333

303033

12

• Pi6 which receive ts (as an individual token-message, or as part of another message):

• Save local state si and send si to P0.

• Attach ts to all further messages, which are to be sent to other processes.

• Save ts and ignore all further incoming ts‘s.

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 626 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Distributed states
 Running the snapshot algorithm:

P3 25

time0 5 10 15 20 25 30 35 40 45

21

20

P1

26 27 29

22

29

P2

31 35 36

23 24 25 26 27 30 31 33 34 35 36 37

30 31 32 33 34 35 36 37 4038 39

27 28 30 37 38

0

24

30

4

27

24

29

22225

8

2222222222222222222222229999999999999999

222222222225

9

26 222222222222277777777777777777777726 2222222227777777777

P 25

2P2

P3

20 22

26

22 23

6 3837

P0

35 36

39

7 3

6

35

3837

333334

666666666666 3666666666666666666666666666633333333333333333666666666666666666666333333333333333633282721P1

P00

3635 336355555 3322 3333 3333333

33

43333443

3030

3130

3

333333333333

3133131 55533333333335555333333333333333335555333335

3333333333333333

303033

12

• Save ts and ignore all further incoming ts‘s.

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 627 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Distributed states
 Running the snapshot algorithm:

P3 25

time0 5 10 15 20 25 30 35 40 45

21

20

P1

26 27 29

22

29

P2

31 35 36

23 24 25 26 27 30 31 33 34 35 36 37

30 31 32 33 34 35 36 37 4038 39

27 28 30 37 38

20 22

6

22

P1

23 24

27

25

5

26 30

4

27

24

29

22225

8

2222222222222222222222229999999999999999

222222222225

9

26 222222222222277777777777777777777726 2222222227777777777

6

P1

3837

P0

PP

P

35 36

396

35

3837

33337

4444440

333334

P3 2

1

P2

P

P

PP

6633333333333333333666666666666666666666333333333333333633

0

37 38838883333333

3635 336355555 3322 3333 3333333

33

43333443

3030

3130

3

333333333333

3133131 55533333333335555333333333333333335555333335

333333333333333

303033

12

• Finalize snapshot

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 628 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Distributed states
 Running the snapshot algorithm:

P3 25

time0 5 10 15 20 25 30 35 40 45

21

20

P1

26 27 29

22

29

P2

31 35 36

23 24 25 26 27 30 31 33 34 35 36 37

30 31 32 33 34 35 36 37 4038 39

27 28 30 37 38

26

23 24

27

30

4

27

24

29

22225

8

2222222222222222222222229999999999999999

222222222225

9

26 22222222277777777777777777726 222277777777

6 3837

P0

1

220 2222

1

35 36

396

35

3837

33337

4444440P3

P2 333334

P

66333333333333333336666666666666666666663333333333333336332P1

P0

37 33888883333333

3635 336355555 3322 3333 3333333

33

43333443

3030

3130

3

333333333333

3133131 55533333333335555333333333333333335555333335

33333333333333333

0

303033

12

 Sorting the events into past and future events.

 Past and future events uniquely separated Consistent state

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 629 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Snapshot algorithm

Termination condition?

Either

• Make assumptions about the communication delays in the system.

or

• Count the sent and received messages for each process (include this in the lo-
cal state) and keep track of outstanding messages in the observer process.

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 630 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Consistent distributed states
Why would we need that?

• Find deadlocks.

• Find termination / completion conditions.

• … any other global safety of liveness property.

• Collect a consistent system state for system backup/restore.

• Collect a consistent system state for further pro-
cessing (e.g. distributed databases).

• …

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 631 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

A distributed server (load balancing)

ServerClient ServerClient

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 632 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

A distributed server (load balancing)

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client Ring of servers

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client Ring of servers

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 633 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

A distributed server (load balancing)

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Send_To_Group (Job) Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Send_To_Group (JTT ob)

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 634 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

A distributed server (load balancing)

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client Contention
messages

Server

erver

Server

Server

Server erver

ver

Server

Serve

Server

err SS

verServ

rver

Se

er

r Se

SServ

Server

rver

Client Contention
messages

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 635 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

A distributed server (load balancing)

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Job_Completed (Results)

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Job_Completed (Results)

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 636 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

A distributed server (load balancing)
with Ada.Task_Identification; use Ada.Task_Identification;

task type Print_Server is

 entry Send_To_Server (Print_Job : in Job_Type; Job_Done : out Boolean);
 entry Contention (Print_Job : in Job_Type; Server_Id : in Task_Id);

end Print_Server;

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 637 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

A distributed server (load balancing)
task body Print_Server is
 begin
 loop
 select

 accept Send_To_Server (Print_Job : in Job_Type; Job_Done : out Boolean) do

 if not Print_Job in Turned_Down_Jobs then

 if Not_Too_Busy then
 Applied_For_Jobs := Applied_For_Jobs + Print_Job;
 Next_Server_On_Ring.Contention (Print_Job, Current_Task);
 requeue Internal_Print_Server.Print_Job_Queue;

 else
 Turned_Down_Jobs := Turned_Down_Jobs + Print_Job;
 end if;

 end if;
 end Send_To_Server;

(...)

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 638 of 700 (chapter 8: “Distributed Systems” up to page 689)

 or
 accept Contention (Print_Job : in Job_Type; Server_Id : in Task_Id) do
 if Print_Job in AppliedForJobs then
 if Server_Id = Current_Task then
 Internal_Print_Server.Start_Print (Print_Job);
 elsif Server_Id > Current_Task then
 Internal_Print_Server.Cancel_Print (Print_Job);
 Next_Server_On_Ring.Contention (Print_Job; Server_Id);
 else
 null; -- removing the contention message from ring
 end if;
 else
 Turned_Down_Jobs := Turned_Down_Jobs + Print_Job;
 Next_Server_On_Ring.Contention (Print_Job; Server_Id);
 end if;
 end Contention;
 or
 terminate;
 end select;
 end loop;
 end Print_Server;

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 639 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Transactions

 Concurrency and distribution in systems
with multiple, interdependent interactions?

 Concurrent and distributed
client/server interactions

beyond single remote procedure calls?

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 640 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Transactions
Defi nition (ACID properties):

• Atomicity: All or none of the sub-operations are performed.
Atomicity helps achieve crash resilience. If a crash occurs, then it is possible
to roll back the system to the state before the transaction was invoked.

• Consistency: Transforms the system from one consistent state to another consistent state.

• Isolation: Results (including partial results) are not revealed unless and until
the transaction commits. If the operation accesses a shared data object,
invocation does not interfere with other operations on the same object.

• Durability: After a commit, results are guaranteed to persist,
even after a subsequent system failure.

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 641 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Transactions
Defi nition (ACID properties):

• Atomicity: All or none of the sub-operations are performed.
Atomicity helps achieve crash resilience. If a crash occurs, then it is possible
to roll back the system to the state before the transaction was invoked.

• Consistency: Transforms the system from one consistent state to another consistent state.

• Isolation: Results (including partial results) are not revealed unless and until
the transaction commits. If the operation accesses a shared data object,
invocation does not interfere with other operations on the same object.

• Durability: After a commit, results are guaranteed to persist,
even after a subsequent system failure.

is possible

How to ensure consistency

in a distributed system?

Actual isolation and

effi cient concurrency?

Shadow copies?

Actual isolation or the
appearance of isolation?

sub operations are performed

Atomic operations
spanning multiple processes?

What hardware do we

need to assume?

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 642 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Transactions

A closer look inside transactions:

• Transactions consist of a sequence of operations.

• If two operations out of two transactions can be performed in any order with the
same fi nal effect, they are commutative and not critical for our purposes.

• Idempotent and side-effect free operations are by defi nition commutative.

• All non-commutative operations are considered critical operations.

• Two critical operations as part of two different transactions while
affecting the same object are called a confl icting pair of operations.

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 643 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Transactions

A closer look at multiple transactions:

• Any sequential execution of multiple transactions
will fulfi l the ACID-properties, by defi nition of a single transaction.

• A concurrent execution (or ‘interleavings’) of multiple transactions
might fulfi l the ACID-properties.

 If a specifi c concurrent execution can be shown to be equivalent to a specifi c sequential
execution of the involved transactions then this specifi c interleaving is called ‘serializable’.

 If a concurrent execution (‘interleaving’) ensures that no transaction ever encounters
an inconsistent state then it is said to ensure the appearance of isolation.

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 644 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Achieving serializability

 For the serializability of two transactions it is necessary and suffi cient
for the order of their invocations

of all confl icting pairs of operations to be the same
for all the objects which are invoked by both transactions.

(Determining order in distributed systems requires logical clocks.)

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 645 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Serializability

time0 5 10 15 20 25 30 35 40 45

Write (A)P1

Write (C)

Read (A)

Write (B)

P2

P3

Write (B)

Order

Re W

• Two confl icting pairs of operations with the same order of execution.

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 646 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Serializability

time0 5 10 15 20 25 30 35 40 45

Write (A)P1

Write (C)

Read (A)

Write (B)

P2

P3

Write (B)

Write (B)

ead (((AAAAAAAAA)))))))))) WR

P1 P2

 Serializable

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 647 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Serializability

time0 5 10 15 20 25 30 35 40 45

Write (A)P1

Write (C)

Read (A) Write (B)P2

P3

Write (B)

Order

Re

W

P1 P2

• Two confl icting pairs of operations with different orders of executions.

 Not serializable.

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 648 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Serializability

time0 5 10 15 20 25 30 35 40 45

Write (A)P1

Write (C)

Read (A)

Write (B)

P2

P3

Write (B)

Read (C)

Order

Re

Re

W

• Three confl icting pairs of operations with the same order of execution
(pair-wise between processes).

• The order between processes also leads to a global order of processes.

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 649 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Serializability

time0 5 10 15 20 25 30 35 40 45

Write (A)P1

Write (C)

Read (A)

Write (B)

P2

P3

Write (B)

Read (C)

Order

Write (B)ead (C)Write (A) RRe

eaddd ((((((((((AAAAAAAAAAAAAAAAAA)))))))))))))))) WR

P1 P2P3

• Three confl icting pairs of operations with the same order of execution
(pair-wise between processes).

• The order between processes also leads to a global order of processes.

 Serializable

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 650 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Serializability

time0 5 10 15 20 25 30 35 40 45

Write (A)P1

Write (C)

Read (A)

Write (B)

P2

P3

Write (B)

Read (C)

Order

Re

Re

W

• Three confl icting pairs of operations with the same order of execution
(pair-wise between processes).

• The order between processes also leads to a global order of processes.

 Serializable

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 651 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Serializability

time0 5 10 15 20 25 30 35 40 45

Write (A)

Read (C)

P1

Write (C)

Read (A)

Write (B)

P2

P3

Write (B)

Read (C)

Order

R

W

eaRe

Re

W

P1 P2 P3

• Three confl icting pairs of operations with the same order of execution
(pair-wise between processes).

• The order between processes does no longer lead to a global order of processes.

 Not serializable

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 652 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Achieving serializability
 For the serializability of two transactions it is necessary and suffi cient

for the order of their invocations
of all confl icting pairs of operations to be the same

for all the objects which are invoked by both transactions.

• Defi ne: Serialization graph: A directed graph;
Vertices i represent transactions Ti;
Edges T Ti j" represent an established global order dependency
 between all confl icting pairs of operations of those two transactions.

 For the serializability of multiple transactions it is
necessary and suffi cient

that the serialization graph is acyclic.

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 653 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Serializability

time0 5 10 15 20 25 30 35 40 45

Write (A)P1

Write (C)

Read (A)

Write (B)

P2

P3

Write (B)

Read (C)

Order

Write (B)ead (C)Write (A) RRe

eaddd ((((((((((AAAAAAAAAAAAAAAAAA)))))))))))))))) WR

P1 P2P3

• Three confl icting pairs of operations with the same order of execution
(pair-wise between processes).

 Serialization graph is acyclic.

 Serializable

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 654 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Serializability

time0 5 10 15 20 25 30 35 40 45

Write (A)

Read (C)

P1

Write (C)

Read (A)

Write (B)

P2

P3

Write (B)

Read (C)

Order

R

W

eaRe

Re

W

P1 P2 P3

• Three confl icting pairs of operations with the same order of execution
(pair-wise between processes).

 Serialization graph is cyclic.

 Not serializable

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 655 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Transaction schedulers

Three major designs:

• Locking methods:
Impose strict mutual exclusion on all critical sections.

• Time-stamp ordering:
Note relative starting times and keep order dependencies consistent.

• “Optimistic” methods:
Go ahead until a confl ict is observed – then roll back.

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 656 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Transaction schedulers – Locking methods
Locking methods include the possibility of deadlocks careful from here on out …

• Complete resource allocation before the start and release at the end of every transaction:

 This will impose a strict sequential execution of all critical transactions.

• (Strict) two-phase locking:
Each transaction follows the following two phase pattern during its operation:

• Growing phase: locks can be acquired, but not released.

• Shrinking phase: locks can be released anytime, but not acquired (two phase locking)
or locks are released on commit only (strict two phase locking).

 Possible deadlocks

 Serializable interleavings

 Strict isolation (in case of strict two-phase locking)

• Semantic locking: Allow for separate read-only and write-locks

 Higher level of concurrency (see also: use of functions in protected objects)

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 657 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Transaction schedulers – Time stamp ordering
Add a unique time-stamp (any global order criterion) on every transaction upon start.
Each involved object can inspect the time-stamps of all requesting transactions.

• Case 1: A transaction with a time-stamp later than all currently active transactions applies:
 the request is accepted and the transaction can go ahead.

• Alternative case 1 (strict time-stamp ordering):
 the request is delayed until the currently active earlier transaction has committed.

• Case 2: A transaction with a time-stamp earlier than all currently active transactions applies:
 the request is not accepted and the applying transaction is to be aborted.

 Collision detection rather than collision avoidance
 No isolation Cascading aborts possible.

 Simple implementation, high degree of concurrency
– also in a distributed environment, as long as a global event order (time) can be supplied.

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 658 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Transaction schedulers – Optimistic control

Three sequential phases:

1. Read & execute:
Create a shadow copy of all involved objects and
perform all required operations on the shadow copy and locally (i.e. in isolation).

2. Validate:
After local commit, check all occurred interleavings for serializability.

3. Update or abort:

3a. If serializability could be ensured in step 2 then all results of involved transactions
are written to all involved objects – in dependency order of the transactions.

3b. Otherwise: destroy shadow copies and start over with the failed transactions.

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 659 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Transaction schedulers – Optimistic control

Three sequential phases:

1. Read & execute:
Create a shadow copy of all involved objects and
perform all required operations on the shadow copy and locally (i.e. in isolation).

2. Validate:
After local commit, check all occurred interleavings for serializability.

3. Update or abort:

3a. If serializability could be ensured in step 2 then all results of involved transactions
are written to all involved objects – in dependency order of the transactions.

3b. Otherwise: destroy shadow copies and start over with the failed transactions.

How to create a consistent copy?

results of involved transactions lt f i l d t ti
How to update all objects consistently?

(i e in isolation)

Full isolation and
maximal concurrency!

Aborts happen after everything
has been committed locally.

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 660 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Distributed transaction schedulers
Three major designs:

• Locking methods: no aborts
Impose strict mutual exclusion on all critical sections.

• Time-stamp ordering: potential aborts along the way
Note relative starting times and keep order dependencies consistent.

• “Optimistic” methods: aborts or commits at the very end
Go ahead until a confl ict is observed – then roll back.

 How to implement “commit” and “abort” operations
in a distributed environment?

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 661 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Two phase commit protocol
Start up (initialization) phase

Uwe R Zimmer The Australian National University page 661 ofy 700 (chapter 8: “Distributed Systems” up to pa0

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

ver

rver

rver

ver

rver

Ring of servers

Data

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 662 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Two phase commit protocol
Start up (initialization) phase

Uwe R Zimmer The Australian National University page 662 ofy 700 (chapter 8: “Distributed Systems” up to pa0

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

erver

Server Server

erver

erver

ver

Client

See e SerSe

ServerSe
Se

Se

Se

rver SSSSServSe

rverSer

ererveSe

ver

verrv

rver

erve

rver

Distributed
Transaction

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 663 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Two phase commit protocol
Start up (initialization) phase

Uwe R Zimmer The Australian National University page 663 ofy 700 (chapter 8: “Distributed Systems” up to pa0

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

ver

rver

rver

ver

rver

Determine
coordinator

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 664 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Two phase commit protocol
Start up (initialization) phase

Uwe R Zimmer The Australian National University page 664 ofy 700 (chapter 8: “Distributed Systems” up to pa0

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Server

Server

Server

Server

Server

Server

Server

Server

Server

Client

Coord.

ver

rver

rver

ver

rver

Determine
coordinator

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 665 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Two phase commit protocol
Start up (initialization) phase

Uwe R Zimmer The Australian National University page 665 ofy 700 (chapter 8: “Distributed Systems” up to pa0

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Server

Server

Server

Server

Server

Server

Server

Server

Server

Client

Coord.

ver

rver

rver

ver

rver

Setup & Start
operations

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 666 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Two phase commit protocol
Start up (initialization) phase

Uwe R Zimmer The Australian National University page 666 ofy 700 (chapter 8: “Distributed Systems” up to pa0

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Server

Server

Server

Server

Server

Server

Server

Server

Server

Client

Coord.

ver

rver

rver

ver

rver

Setup & Start
operations

Shadow
copy

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 667 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Two phase commit protocol
Phase 1: Determine result state

Uwe R Zimmer The Australian National University page 667 ofy 700 (chapter 8: “Distributed Systems” up to pa0

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Server

Server

Server

Server

Server

Server

Server

Server

Server

Client

Coord.

ver

rver

rver

ver

rver

Coordinator requests
and assembles votes:
"Commit" or "Abort"

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 668 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Two phase commit protocol
Phase 2: Implement results

Uwe R Zimmer The Australian National University page 668 ofy 700 (chapter 8: “Distributed Systems” up to pa0

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Server

Server

Server

Server

Server

Server

Server

Server

Server

Client

Coord.

ver

rver

rver

ver

rver

Coordinator instructs
everybody to "Commit"

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 669 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Two phase commit protocol
Phase 2: Implement results

Uwe R Zimmer The Australian National University page 669 ofy 700 (chapter 8: “Distributed Systems” up to pa0

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Server

Server

Server

Server

Server

Server

Server

Server

Server

Client

Coord.

ver

rver

rver

ver

rver

Everybody commits

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 670 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Two phase commit protocol
Phase 2: Implement results

Uwe R Zimmer The Australian National University page 670 ofy 700 (chapter 8: “Distributed Systems” up to pa0

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Server

Server

Server

Server

Server

Server

Server

Server

Server

Client

Coord.

ver

rver

rver

ver

rver

Everybody destroys
shadows

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 671 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Two phase commit protocol
Phase 2: Implement results

Uwe R Zimmer The Australian National University page 671 ofy 700 (chapter 8: “Distributed Systems” up to pa0

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Server

Server

Server

Server

Server

Server

Server

Server

Server

Client

Coord.

ver

rver

rver

ver

rver

Everybody reports
"Committed"

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 672 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Two phase commit protocol
or Phase 2: Global roll back

Uwe R Zimmer The Australian National University page 672 ofy 700 (chapter 8: “Distributed Systems” up to pa0

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Server

Server

Server

Server

Server

Server

Server

Server

Server

Client

Coord.

ver

rver

rver

ver

rver

Coordinator instructs
everybody to "Abort"

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 673 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Two phase commit protocol
or Phase 2: Global roll back

Uwe R Zimmer The Australian National University page 673 ofy 700 (chapter 8: “Distributed Systems” up to pa0

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Server

Server

Server

Server

Server

Server

Server

Server

Server

Client

Coord.

ver

rver

rver

ver

rver

Everybody destroys
shadows

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 674 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Two phase commit protocol
Phase 2: Report result of distributed transaction

Uwe R Zimmer The Australian National University page 674 ofy 700 (chapter 8: “Distributed Systems” up to pa0

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Server

Server

Server

Server

Server

Server

Server

Clien

Coord.

ver

rver

rver

Server

Server

nt

C

ver

rverCoordinator reports to client:
"Committed" or "Aborted"

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 675 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Distributed transaction schedulers
Evaluating the three major design methods in a distributed environment:

• Locking methods: No aborts.
Large overheads; Deadlock detection/prevention required.

• Time-stamp ordering: Potential aborts along the way.
Recommends itself for distributed applications, since decisions
are taken locally and communication overhead is relatively small.

• “Optimistic” methods: Aborts or commits at the very end.
Maximizes concurrency, but also data replication.

 Side-aspect “data replication”: large body of literature on this topic
(see: distributed data-bases / operating systems / shared memory / cache management, …)

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 676 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Redundancy (replicated servers)
Premise:

A crashing server computer should not compromise the functionality of the system
(full fault tolerance)

Assumptions & Means:

• k computers inside the server cluster might crash without losing functionality.

 Replication: at least k 1+ servers.

• The server cluster can reorganize any time (and specifi cally after the loss of a computer).

 Hot stand-by components, dynamic server group management.

• The server is described fully by the current state and the sequence of messages received.

 State machines: we have to implement consistent state adjustments (re-organization)
and consistent message passing (order needs to be preserved).

[Schneider1990]

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 677 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Redundancy (replicated servers)

Stages of each server:

Job message received by all active servers

Job processed locally
Job message received locally

Received Deliverable

Processed

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 678 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Redundancy (replicated servers)
Start-up (initialization) phase

h l l f h b d

p () pp p

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client Ring of identical
servers

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 679 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Redundancy (replicated servers)
Start-up (initialization) phase

h l l f h b d

p () pp p

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client Determine
coordinator

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 680 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Redundancy (replicated servers)
Start-up (initialization) phase

h l l f h b d

p () pp p

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Coord.

Coordinator
determined

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 681 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Redundancy (replicated servers)
Coordinator receives job message

h l l f h b d

j gj g

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Coord.

Server

Server

nt

C

Send Job

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 682 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Redundancy (replicated servers)
Distribute job

h l l f h b d

j

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Coord.

Coordinator sends
job both ways

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 683 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Redundancy (replicated servers)
Distribute job

h l l f h b d

j

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Coord.

Everybody received job
(but nobody
knows that)

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 684 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Redundancy (replicated servers)
Processing starts

h l l f h b d

gg

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Coord.

First server detects
two job-messages
☞ processes job

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 685 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Redundancy (replicated servers)
Everybody (besides coordinator) processes

h l l f h b d

y y () pp

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Coord.

All server detect
two job-messages

☞ everybody
processes job

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 686 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Redundancy (replicated servers)
Coordinator processes

h l l f h b d

pp

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Coord.

Coordinator also
received two messages

and processes job

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 687 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Redundancy (replicated servers)
Result delivery

h l l f h b d

yy

Server

Server

Server

Server

Server Server

Server

Server

Server

Server

Client

Coord.

Server

Server

nt

C

Coordinator delivers
his local result

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 688 of 700 (chapter 8: “Distributed Systems” up to page 689)

Distributed Systems

Redundancy (replicated servers)

Event: Server crash, new servers joining, or current servers leaving.

 Server re-confi guration is triggered by a message to all
(this is assumed to be supported by the distributed operating system).

Each server on reception of a re-confi guration message:

1. Wait for local job to complete or time-out.

2. Store local consistent state Si.

3. Re-organize server ring, send local state around the ring.

4. If a state Sj with j i> is received then S Si j%

5. Elect coordinator

6. Enter ‘Coordinator-’ or ‘Replicate-mode’

Distributed Systems

© 2015 Uwe R. Zimmer, The Australian National University page 689 of 700 (chapter 8: “Distributed Systems” up to page 689)

Summary

Distributed Systems

• Networks
• OSI, topologies

• Practical network standards

• Time
• Synchronized clocks, virtual (logical) times

• Distributed critical regions (synchronized, logical, token ring)

• Distributed systems
• Elections

• Distributed states, consistent snapshots

• Distributed servers (replicates, distributed processing, distributed commits)

• Transactions (ACID properties, serializable interleavings, transaction schedulers)

9
Summary

Uwe R. Zimmer - The Australian National University

Concurrent & Distributed Systems 2015

Summary

© 2015 Uwe R. Zimmer, The Australian National University page 691 of 700 (chapter 9: “Summary” up to page 700)

Summary

Concurrency – The Basic Concepts
• Forms of concurrency

• Models and terminology

• Abstractions and perspectives: computer science, physics & engineering

• Observations: non-determinism, atomicity, interaction, interleaving

• Correctness in concurrent systems

• Processes and threads

• Basic concepts and notions

• Process states

• Concurrent programming languages:

• Explicit concurrency: e.g. Ada, Chapel

• Implicit concurrency: functional programming – e.g. Haskell, Caml

Summary

© 2015 Uwe R. Zimmer, The Australian National University page 692 of 700 (chapter 9: “Summary” up to page 700)

Summary

Mutual Exclusion

• Defi nition of mutual exclusion

• Atomic load and atomic store operations
• … some classical errors

• Decker’s algorithm, Peterson’s algorithm

• Bakery algorithm

• Realistic hardware support
• Atomic test-and-set, Atomic exchanges, Memory cell reservations

• Semaphores
• Basic semaphore defi nition

• Operating systems style semaphores

Summary

© 2015 Uwe R. Zimmer, The Australian National University page 693 of 700 (chapter 9: “Summary” up to page 700)

Summary

Synchronization

• Shared memory based synchronization

• Flags, condition variables, semaphores,
conditional critical regions, monitors, protected objects.

• Guard evaluation times, nested monitor calls, deadlocks,
simultaneous reading, queue management.

• Synchronization and object orientation, blocking operations and re-queuing.

• Message based synchronization

• Synchronization models

• Addressing modes

• Message structures

• Examples

Summary

© 2015 Uwe R. Zimmer, The Australian National University page 694 of 700 (chapter 9: “Summary” up to page 700)

Summary

Non-Determinism

• Non-determimism by design:
• Benefi ts & considerations

• Non-determinism by interaction:
• Selective synchronization

• Selective accepts

• Selective calls

• Correctness of non-deterministic programs:
• Sources of non-determinism

• Predicates & invariants

Summary

© 2015 Uwe R. Zimmer, The Australian National University page 695 of 700 (chapter 9: “Summary” up to page 700)

Summary

Scheduling

• Basic performance scheduling

• Motivation & Terms

• Levels of knowledge / assumptions about the task set

• Evaluation of performance and selection of appropriate methods

• Towards predictable scheduling

• Motivation & Terms

• Categories & Examples

Summary

© 2015 Uwe R. Zimmer, The Australian National University page 696 of 700 (chapter 9: “Summary” up to page 700)

Summary

Safety & Liveness

• Liveness
• Fairness

• Safety
• Deadlock detection

• Deadlock avoidance

• Deadlock prevention

• Atomic & Idempotent operations
• Definitions & implications

• Failure modes
• Definitions, fault sources and basic fault tolerance

Summary

© 2015 Uwe R. Zimmer, The Australian National University page 697 of 700 (chapter 9: “Summary” up to page 700)

Summary

Architectures

• Hardware architectures - from simple logic to supercomputers
• logic, CPU architecture, pipelines, out-of-order execution, multithreading, ...

• Operating systems
• basics: context switch, memory management, IPC

• structures: monolithic, modular, layered, µkernels

• UNIX, POSIX

• Concurrency in languages
• some examples: CSP, Occam, Go, Chapel, Ada

Summary

© 2015 Uwe R. Zimmer, The Australian National University page 698 of 700 (chapter 9: “Summary” up to page 700)

Summary

Distributed Systems

• Networks
• OSI, topologies

• Practical network standards

• Time
• Synchronized clocks, virtual (logical) times

• Distributed critical regions (synchronized, logical, token ring)

• Distributed systems
• Elections

• Distributed states, consistent snapshots

• Distributed servers (replicates, distributed processing, distributed commits)

• Transactions (ACID properties, serializable interleavings, transaction schedulers)

Summary

© 2015 Uwe R. Zimmer, The Australian National University page 699 of 700 (chapter 9: “Summary” up to page 700)

Exam preparations

Helpful

• Distinguish central aspects from excursions, examples & implementations.

• Gain full understanding of all central aspects.

• Be able to categorize any given example under a general theme discussed in the lecture.

• Explain to and discuss the topics with other (preferably better) students.

• Try whether you can connect aspects from different parts of the lecture.

Not helpful

• Remembering the slides word by word.

• Learn the Ada95 / Unix / Posix / Occam / sockets reference manual page by page.

Summary

© 2015 Uwe R. Zimmer, The Australian National University page 700 of 700 (chapter 9: “Summary” up to page 700)

